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Background

1 Massive amount of 3D spatial objects derived from 3D analytical pathology imaging
1 “GIS” generic queries for pathologically meaningful spatial analysis on 3D big data
e.g., for each 3D cell, return the nearest 3D blood vessel and the distance

Challenges

 Explosion of 3D data: hundreds of millions of 3D objects in the scale of terabytes
d Complex structures and representations: 3D mesh model with numerous structural detalils
d High computation complexity: computationally intensive 3D geometric operations

ODbjectives

1 To provide a scalable and efficient 3D spatial query system for querying massive 3D

spatial data based on MapReduce
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Scalable 3D Spatial Queries with MapReduce

System Overview

J Spatial data partitioning: partition 3D input into cuboids to increase the level of parallelism
d 3D on-demand spatial query engine: multi-level indexing and spatial query processors

3D Spatial Partitioning

J Each partitioned cuboids as a processing unit for querying tasks on MapReduce
J Cuboids are processed in parallel without data dependence or communication requirements

Multi-level Indexing

1 Global storage indexing: HDFS-level data filtering (point query)

1 Cuboid indexing: MapReduce-level computation filtering (containment query)

1 On-demand object indexing: to build indexes on-the-fly for objects within a cuboid
 Structural indexing: for geometric computation on 3D objects with complex structures

3D Spatial Queries

J Spatial join or spatial cross-matching
J Nearest neighbor: 3D R*-tree (with AABB tree) and Voronoi diagram (with skeleton)
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3D Spatial Query Engine
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Experimental Results

System Architecture of Hadoop-GIS 3D

Structure Index of 3D Blood Vessel with Skeleton

Performance of 3D Spatial Queries NN
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(b) Runtime of each component
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Fig. 1: System Performance of Spatial Join
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Fig. 2: Different LoD Representations for the Same Blood Vessel
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Fig. 3: System Performance of Nearest Neighbor (NN) Query

(d) R*-tree NN vs. LoD
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