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Abstract

The adversarial risk of a machine learning model has been widely studied. Most previous works
assume that the data lies in the whole ambient space. We propose to take a new angle and take the
manifold assumption into consideration. Assuming data lies in a manifold, we investigate two new types
of adversarial risk, the normal adversarial risk due to perturbation along normal direction, and the
in-manifold adversarial risk due to perturbation within the manifold. We prove that the classic adversarial
risk can be bounded from both sides using the normal and in-manifold adversarial risks. We also show
with a surprisingly pessimistic case that the standard adversarial risk can be nonzero even when both
normal and in-manifold risks are zero. We finalize the paper with empirical studies supporting our
theoretical results. Our results suggest the possibility of improving the robustness of a classifier by only
focusing on the normal adversarial risk.

1 Introduction
Machine learning (ML) algorithms have achieved astounding success in multiple domains such as computer
vision [14, 13], natural language processing [34, 33], and robotics [15, 18]. These models perform well on
massive datasets but are also vulnerable to small perturbations on the input examples. Adding a slight and
visually unrecognizable perturbation to an input image can completely change the model’s prediction. Many
works have been published focusing on such adversarial attacks [29, 3, 17]. To improve the robustness of these
models, various defense methods have been proposed [17, 37, 25]. These methods mostly focus on minimizing
the adversarial risk, i.e., the risk of a classifier when an adversary is allowed to perturb any data with an
oracle.

Despite the progress in improving the robustness of models, it has been observed that compared with
a standard classifier, a robust classifier often has a lower accuracy on the original data. The accuracy of a
model can be compromised when one optimizes its adversarial risk. This phenomenon is called the trade-off
between robustness and accuracy. [28] observed this trade-off effect on a large number of commonly used model
architectures. They concluded that there is a linear negative correlation between the logarithm of accuracy
and adversarial risk. [32] proved that adversarial risk is inevitable for any classifier with a non-zero error
rate. [37] decomposed the adversarial risk into the summation of standard error and boundary error. The
decomposition provides the opportunity to explicitly control the trade-off. They also proposed a regularizer
to balance the trade-off by maximizing the boundary margin.
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In this paper, we investigate the adversarial risk and the robustness-accuracy trade-off through a new
angle. We follow the classic manifold assumption, i.e., data are living in a low dimensional manifold embedded
in the input space [23, 5, 19, 20].

Based on this assumption, we analyze the adversarial risk with regard to adversarial perturbations within
the manifold and normal to the manifold. By restricting to in-manifold and normal perturbations, we define
the in-manifold adversarial risk and normal adversarial risk. Using these new risks, together with the
standard risk, we prove an upper bound and a lower bound for the adversarial risk. We also show that
the bound is tight by constructing a pessimistic case. We validate our theoretical results using synthetic
experiments.

Our study sheds light on a new aspect of the robustness-accuracy trade-off. Through the decomposition
into in-manifold and normal adversarial risks, we might find an extra margin to exploit without confronting
the trade-off. Future work will include developing normal adversarial training algorithms for real-world
datasets.

1.1 Related Works
Robustness-accuracy Trade-off There are several works studying the trade-off between robustness and
accuracy [32, 28, 37, 7]. The basic question is whether the trade-off actually exists. i.e. is there a classifier
that is both accurate and robust? Empirical and theoretical proofs showed that actual trade-off does exist
even in the infinite data limit [32, 28, 37]. [7] showed that a high accuracy model can inevitably be fooled by
the adversarial attack. [37] gave examples showing that the Bayes optimal classifier may not be robust.

However, some works have different views on this trade-off or even its existence. In contrast to the idea
that the trade-off is unavoidable, these works argued that a lack of sufficient optimization methods [1, 22, 26]
or better network architecture [12, 9] causes the drop in accuracy, instead of the increase in robustness. [36]
showed the existence of both robust and accurate classifiers and argued that the trade-off is influenced by the
training algorithm to optimize the model. They investigated distributionally separated dataset and claimed
that the gap between robustness and accuracy arises from the lack of a training method that imposes local
Lipschitzness on the classifier. Remarkably, in [11, 21, 4], it was shown that with certain augmentation of the
dataset, one may be able to obtain a model that is both accurate and robust.

Manifold Assumption One important line of research focuses on the manifold assumption on the data
distribution. This assumption suggests that observed data is distributed on a low dimensional manifold [23,
5, 19] and there exists a mapping that embeds the low dimension manifold in some higher dimension
space. Traditional manifold learning methods [31, 24] try to recover the embedding by assuming the mapping
preserves certain properties like distances or local angles. Following this assumption, on the topic of robustness,
[30] showed the existence of adversarial attack on the flat manifold with linear classification boundary. It
was proved later in [10] that in-manifold adversarial examples exist. They stated that high dimension data
is highly sensitive to l2 perturbations and pointed out the nature of adversarial is the issue with potential
decision boundary. Later, [27] showed that with the manifold assumption, regular robustness is correlated
with in-manifold adversarial examples, and therefore, accuracy and robustness may not be contradictory
goals. Further discussion [35] even suggested that adding adversarial examples in the training process can
improve the accuracy of the model. [16] used perturbation within a latent space to approximate in-manifold
perturbation. To the best of our knowledge, no existing work discussed normal perturbation and normal
adversarial risk as we do. We are also unaware of any theoretical results proving upper/lower bounds for
adversarial risk in the manifold setting.

We also note a classic manifold reconstruction problem, i.e., reconstructing a d-dimensional manifold
given a set of points sampled from the manifold. A large group of classical algorithms [8, 6, 20] are provably
good, i.e., they give a guarantee of reproducing the manifold topology with a sufficiently large number of
sample points.
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Figure 1: Tangential and Normal Space

2 MANIFOLD BASED RISK DECOMPOSITION
In this section, we state our main theoretical result 1, which decomposes the adversarial risk into appropriately
defined normal and in-manifold or tangential risks. We first define these quantities and set up basic notation,
with the main theorem following in Section 2.3. For the sake of simplicity, we describe our main theorem in
the setting of binary {−1, 1} labels.

2.1 Data Manifold
Let (RD, ||.||) denote the D dimensional Euclidean space with `2-norm. For x ∈ RD, Bε(x) be the open ball
of radius r in RD with center at x. For a set A ⊂ RD, define Bε(A) = {y : ∃x ∈ A, d(x, y) < ε}.

LetM⊂ RD be a d-dimensional compact smooth manifold embedded in RD. Thus for any x ∈M there
is a corresponding coordinate chart (U, g) where U 3 x is a open set ofM and g is a homeomorphism from U
to a subset of Rd. For x ∈M, we let TxM and NxM denote the tangent and normal spaces at x. Intuitively,
the tangent space TxM is the space of tangent directions, or equivalence classes of curves in M passing
through x, with two curves considered equivalent if they are tangent at x. The normal space NxM is the
set of vectors in RD that are orthogonal to any vector in TxM. SinceM is a smooth d-manifold, TxM and
NxM are d and D − d dimensional vector spaces, respectively. See Figure 1. For detailed definitions, we
refer the reader to [2].

We assume that the data and (binary) label pairs are drawn fromM×{−1, 1} according to some unknown
distribution p(x, y). Note thatM is unknown. A score function f(x) is a continuous function from RD to
[0, 1]. We denote by 1(A) the indicator function of the event A that is 1 if A occurs and 0 if A does not
occur, and will use it to represent the 0-1 loss.

2.2 Robustness and Risk
Given data fromM×{−1, 1} drawn according to p and a classifier f on RD, we define three types of risks.
The first, adversarial risk, has been extensively studied in machine learning literature:

Definition 1 (Adversarial Risk). Given ε > 0, define the adversarial risk of classifier f with budget ε to be

Radv(f, ε) := E
(x,y)∼p

1(∃x′ ∈ Bε(x) : f(x′)y ≤ 0)

Notice that Bε(x) is the open ball around x in RD (the ambient space).
We next define risk that is concerned only with in-manifold perturbations. Previously, [10] and [27]

showed that there exist in-manifold adversarial examples, and empirically demonstrated that in-manifold
perturbations are a cause of the standard classification error. Therefore, in the following, we define the
in-manifold perturbations and in-manifold adversarial risk.

Definition 2 (In-manifold Risk). Given ε > 0, the in-manifold adversarial perturbation for classifier f with
budget ε is the set

Binε (x) := {x′ ∈M : ‖x− x′‖ ≤ ε}

3



The in-manifold adversarial risk is

Rinadv(f, ε) := E
(x,y)∼p

1(∃x′ ∈ Binε (x) : f(x′)y ≤ 0)

We remark that while the above perturbation is on the manifold, in many manifold-based defense
algorithms use generative models to estimate the homeomorphism (the manifold chart) z = g(x) for real-world
data. Therefore, instead of in-manifold perturbation, one can also use an equivalent η-budget perturbation in
the latent space. However, for our purposes, the in-manifold definition will be more convenient to use. Lastly,
we define the normal risk:

Definition 3 (Normal Adversarial Risk). Given ε > 0, the normal adversarial perturbation for classifier f
with budget ε is be the set

Bnorε (x) := {x′ : x′ − x ∈ NxM, |‖x− x′‖ ≤ ε}

Define the normal adversarial risk as

Rnoradv(f, ε) := E
(x,y)∼p

1(∃x′ 6= x ∈ Bnorε (x) : f(x′)y ≤ 0)

Notice that the normal adversarial risk is non-zero if there is an adversarial perturbation x′ 6= x in the
normal direction at x. Finally, we have the usual standard risk : Rstd(f) := E(x,y)∼p 1(f(x)y ≤ 0).

2.3 Main Result: Decomposition of Risk
In this section, we state our main result that decomposes the adversarial risk into its tangential and normal
components. Our theorem will require a mild assumption on the decision boundary DB(f) of the classifier f ,
i.e., the set of points x where f(x) = 0.
Assumption [A]: For all x ∈ DB(f) and all neighborhoods U 3 x containing x, there exist points x0 and
x1 in U such that f(x0) < 0 and f(x1) > 0.

This assumption states that a point that is difficult to classify by f has points of both labels in any given
neighborhood around it. In particular, this means that the decision boundary does not contain an open set.
We remark that both Assumption A and the continuity requirement for the score function f are implicit in
previous decomposition results like Equation 1 in [37]. Without Assumption A, the “neighborhood” of the
decision boundary in [37] will not contain the decision boundary, and it is easy to give a counterexample to
Equation 1 in [37] if f if not continuous.

Our decomposition result will decompose the adversarial risk into the normal and tangential directions:
however, as we will show, an “extra term” appears, which we define next:

Definition 4 (NNR Nearby-Normal-Risk). Fix ε > 0. Denote by A(x, y) the event that ∀x′ ∈ Bnorε (x), f(x′)y >
0, i.e., the normal adversarial risk of x is zero.

Denote by B(x, y) the event that

∃x′ ∈ Bin2ε (x) : (∃z ∈ Bnorε (x′) : f(z)f(x′) ≤ 0),

i.e., x has a point x′ near it such that x′ has non-zero normal adversarial risk.
Denote by C(x, y) the event ∀x′ ∈ Bin2ε (x), f(x′)y > 0, i.e., x has no adversarial perturbation in the

manifold within distance 2ε.
The Nearby-Normal-Risk (denoted as NNR) of f with budget ε is defined to be

E
(x,y)∼p

1(A(x, y) ∧B(x, y) ∧ C(x, y)),

where ∧ denotes “and”.

We are now in a position to state our main result.
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Theorem 1. [Risk Decomposition] LetM be a smooth compact manifold in RD, and let data be drawn from
M× {−1, 1} according to some distribution p. There exists a ∆ > 0 depending only on M such that the
following statements hold for any ε < ∆. For any score function f satisfying assumption A,

(i)

Radv(f, ε) ≤ Rstd(f) +Rnoradv(f, ε) +Rinadv(f, 2ε)

+ NNR(f, ε). (1)

(ii) If Rnoradv(f, ε) = 0, then
Radv(f, ε) ≤ Rstd(f) +Rinadv(f, 2ε)

Remark:

1. The first result decomposes the adversarial risk into the standard risk, the normal adversarial risk, the
in-manifold risk, and an “extra term” — the Nearby-Normal-Risk. The NNR comes into play when a
point x doesn’t have normal adversarial risk, and the score function on all points nearby agrees with
y(x), yet there is a point near x that has non-zero normal adversarial risk.

2. The second result states that if the normal adversarial risk is zero, then the ε-adversarial risk is bounded
by the sum of the standard risk and the 2ε in-manifold risk.

One may wonder if a decomposition of the form Radv(f, ε) ≤ Rstd(f) +Rnoradv(f, ε) +Rinadv(f, 2ε) is possible.
We prove that this is not possible.

Theorem 2. [Tightness of Decomposition Result]
For any ε < 1/2, there exists a sequence {fn}∞n=1 of continuous score functions such that

1. Rstd(f) = 0 for all n ≥ 1,

2. Rinadv(fn, 2ε) = 0 for all n ≥ 1, and

3. Rnoradv(fn, ε)→ 0 as n goes to infinity,

but Radv(f, ε) = 1 for all n > 1√
3ε
.

Thus all three terms except the NNR term go to zero, but the adversarial risk (the left side of Equation 2)
goes to one.

2.4 Decomposition when y is Deterministic
Let η(x) = Pr(y = 1|x). We consider here the simplistic setting when η(x) is either zero or one, i.e., y is a
deterministic function of x. In this case, we can explain our decomposition result in a simpler way.

Let Znor(f, ε) := {x ∈ M : f(x)y > 0 and ∃x′ 6= x ∈ Bnorε (x), f(x′)y(x) ≤ 0}. That is, Znor(f, ε) is the
set of points with no standard risk, but with a non-zero normal adversarial risk under a positive but less than
ε normal perturbation. Let Znor(f, ε) =M\ Znor(f, ε) be the complement of Znor(f, ε). For a set A ⊂M,
let µ(A) denote the measure of A.

Corollary 1. LetM be a smooth compact manifold in RD, and let η(x) ∈ {0, 1} for all x ∈M . There exists
a ∆ > 0 depending only onM such that the following statements hold for any ε < ∆. For any score function
f satisfying assumption A,

(i)

Radv(f, ε) ≤ Rstd(f) +Rinadv(f, 2ε) +Rnoradv(f, ε)

+ µ(Znor(f, ε) ∩B2ε(Z
nor(f, ε)) (2)

(ii) If Rnoradv(f, ε) = 0, then Radv(f, ε) ≤ Rstd(f) +Rinadv(f, 2ε).

Therefore in this setting, the adversarial risk can be decomposed into the in-manifold risk and the measure
of a neighborhood of the points that have non-zero normal adversarial risk.
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2.5 Proofs of Theorems 1 and 2
The complete proof of Theorem 1 is technical and is provided in the supplementary materials. Here we
provide a sketch of the proof first. Then we give the complete proof of Theorem 2.

2.5.1 Proof Sketch of Theorem 1

We first address the existence of the constant ∆ that only depends onM in the theorem statement. Define a
tubular neighborhood ofM as a set N ⊂ RD containingM such that any point z ∈ N has a unique projection
π(z) ontoM such that z − π(z) ∈ Nπ(z)M. Thus the normal line segments of length ε at any two points
x, x′ ∈M are disjoint.

By Theorem 11.4 in [2], we know that there exists ∆ such that N := {y ∈ RD : dist(y,M) < ∆} is a
tubular neighborhood ofM. The ∆ guaranteed by Theorem 11.4 is the ∆ referred to in our theorem, and
the budget ε is constrained to be at most ∆.

For simplicity, we first sketch the proof of the case when y is deterministic (the setting of Corollary 1).
Consider a pair (x, y) ∼ p, such that x has an adversarial perturbation x′ within distance ε. We show that
one of the four cases must occur:

• x′ = x (standard risk).

• x′ 6= x, x′ ∈ NxM, and f(x)y > 0 (normal adversarial risk).

• Let x′′ = π(x′) (the unique projection of x′ ontoM), then d(x′′, x) ≤ 2ε and either

– f(x′′)y ≤ 0, and x has an 2ε in-manifold adversarial perturbation (in-manifold risk), or

– f(x′′)f(x′) ≤ 0, which implies that x is within 2ε of a point x′′ ∈ M that has non-zero normal
adversarial risk. (NNR: nearby-normal-risk)

The second of these sets is Znor(f, ε) in the setting of Corollary 1. One can see that the four cases
correspond to the four terms in Equation 2.

For the proof of Theorem 1, one has to observe that since y is not deterministic, the set Znor(f, ε) is
random. One then has to average over all possible Znor(f, ε), and show that the average equals NNR.

For the second part of Theorem 1 and Corollary 1, observe that if the normal adversarial risk is zero, then
in the last case, x′′ has non-zero normal adversarial risk, with normal adversarial perturbation x′. Unless
x′′ is on the decision boundary, by continuity of f one can show that there exists an open set around x′′
such that all points here have non-zero normal adversarial risk. This contradicts the fact that the normal
adversarial risk is zero, implying that case 4 happens only on a set of measure zero (recall that by assumption
A the decision boundary does not contain any open set). This completes the proof sketch.

2.5.2 Proof of Theorem 2

LetM = [0, 1] and fix ε < 1/2 and n ≥ 1. We will think of data as lying in the manifoldM, and R2 as the
ambient space. The true distribution is simply η(x) = 1 for all x ∈M, hence y ≡ 1 (all labels onM are 1).

Let `1 = n−1
n(n+1) and `2 = 1

n2 . Note that (n + 1)`1 + n`2 = 1. Consider the following partition of
M = A0 ∪ B1 ∪ A1 ∪ B2 ∪ · · · ∪ Bn ∪ An, Where Ai (0 ≤ i ≤ n) is of length `1 and Bi (1 ≤ i ≤ n) is an
interval of length `2. The interval A0, B1, A1, · · · , Bn, An appear in this order from left to right.

For ease of presentation, we will consider {0, 1} binary labels, and build score functions fn taking values
in [0, 1] that satisfy the conditions of the Theorem.

For an x ∈ Ai for some 0 ≤ i ≤ n, define gn(x) = 1. For x ∈ Bi for some 1 ≤ i ≤ n, define gn(x) = ε/2.
Observe that ε/2 < 1/4.

We now define the decision boundary of fn as the set of points in R2 on the “graph” of gn and −gn. That
is,

DB(fn) = {(x, cgn(x)) : x ∈ [0, 1], c ∈ {−1, 1}} .

6



Figure 2: Lower bound illustration

See Figure 2 for a picture of the upper decision boundary. Now let fn be any continuous function with
decision boundary DB(fn) as above. That is, fn : R2 → [0, 1] is such that fn(x, t) > 1/2 if |t| < gn(x),
fn(x, t) < 1/2 if |t| > gn(x) and fn(x, y) = 1/2 if |t| = gn(x).

In-manifold Risk Is Zero Observe that since η(x) = 1 on [0, 1], the in-manifold risk of fn is zero, since
fn(x, 0) > 1/2, and so sign(2fn − 1) equals 1, which is the same as the label y at x. This means that there
are no in-manifold adversarial perturbations, no matter the budget. Thus Rinadv(fn, ε) = 0 for all n ≥ 1.

Normal Adversarial Risk Goes To Zero Next we consider the normal adversarial risk. If x ∈ Ai for
some i, then a point in the normal ball with budget ε is of the form (x, t) with |t| < ε < 1/2, but fn(x, t) > 1/2
for such points, and thus sign(2fn − 1) = y(x). Thus x ∈ Ai does not contribute to the normal adversarial
risk.

If x ∈ Bi for some i then fn(x, ε) < 1/2 while fn(x, 0) > 1/2, and hence such x contributes to the normal
adversarial risk. Thus Rnoradv(fn, ε) =

∑n
i=1 µ(Bi) =

∑n
i=1 `2 = 1/n, which goes to zero as n goes to infinity.

Adversarial Risk Goes To One Now we show that Radv(fn, ε) goes to one. In fact, we will show that
as long as n is sufficiently large, the adversarial risk is 1. Consider n such that `1 := n−1

n(n+1) <
√

3ε. Note
that such an n exists simply because `1 goes to zero as n goes to infinity, and n > 1√

3ε
works.

Clearly, points in Bi contribute to adversarial risk as they have adversarial perturbations in the normal
direction. However, if we consider x ∈ Ai (which does not have adversarial perturbations in the normal
direction or in-manifold), we show that there still exists an adversarial perturbation in the ambient space:
that is, there exists a point x′ such that a) the distance between (x′, ε/2) and (x, 0) is at most ε, and b)
sign(2fn(x, ε/2)) 6= sign(2fn(x, 0)). Let x′ be the closest point in B := ∪Bi to x. Then |x′ − x| ≤ `1/2 <
√

3ε/2. Thus the distance between (x′, ε/2) and (x, 0) is at most
√

(
√

3ε/2)2 + (ε/2)2 = ε. Since x′ ∈ B,
fn(x′, ε/2) < 1/2 whereas fn(x, 0) < 1/2, (x′, ε/2) is a valid adversarial perturbation around x.

Thus for all x ∈ [0, 1], there exists an adversarial perturbation within budget ε, and therefore Radv(fn, ε) = 1
as long as n > 1√

3ε
. This completes the proof.

3 EXPERIMENT
In this section, we verify the decomposition upper bound in Corollary 1 on synthetic data sets. For both i)
and ii) in Corollary 1, we empirically evaluate each term in the inequality on several classifiers and compare
the values according to the claims in Corollary 1.
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Table 1: 2D Adversarial risk comparison

Single Boundary f fadv fnor

ε Radv RHS Radv RHS Radv RHS Rinadv(2ε) Rnoradv Rstd

0.01 0.0110 0.022 0.0110 0.022 0.0090 0.0220 0.0140 0.0050 0.0050

0.02 0.0130 0.0449 0.0130 0.0449 0.0130 0.0449 0.0290 0.0060 0.0060

0.03 0.0230 0.063 0.0250 0.0671 0.0230 0.0633 0.0400 0.0120 0.0120

0.05 0.0280 0.0794 0.0300 0.0784 0.0280 0.0794 0.0620 0.0040 0.0040

0.1 0.0709 0.1652 0.0699 0.1645 0.0709 0.1650 0.133 0.0 0.0040

0.15 0.0979 0.2831 0.1009 0.2886 0.1009 0.2866 0.1850 0.0050 0.0050

0.2 0.128 0.3951 0.126 0.3971 0.128 0.4086 0.261 0.0050 0.0040

0.25 0.1660 0.4966 0.1630 0.4931 0.1660 0.4986 0.3259 0.0040 0.0040

0.3 0.1979 0.4509 0.1979 0.5613 0.1979 0.4505 0.35 0.0 0.0

Double Boundary f fadv fnor

ε Radv RHS Radv RHS Radv RHS Rinadv(2ε) Rnoradv Rstd

0.01 0.0080 0.0286 0.0060 0.0296 0.0070 0.0276 0.0180 0.0030 0.0030

0.02 0.0240 0.0694 0.0230 0.2525 0.0240 0.0694 0.0490 0.0050 0.0050

0.03 0.0510 0.1333 0.0460 0.1363 0.0510 0.1383 0.0949 0.0110 0.0110

0.05 0.0620 0.1810 0.0620 0.1640 0.0629 0.1640 0.1139 0.0080 0.0080

0.1 0.1170 0.3398 0.1169 0.3071 0.12 0.2746 0.2400 0.0060 0.0060

0.15 0.1850 0.6059 0.1860 0.4895 0.1939 0.5948 0.3860 0.0040 0.0040

0.2 0.242 0.8763 0.247 0.8002 0.265 0.878 0.5409 0.0060 0.0050

0.25 0.3139 1. 0.3169 0.9971 0.3239 1. 0.6500 0.0080 0.0080

0.3 0.386 0.9615 0.379 1. 0.394 1. 0.6520 0.0070 0.0060

In the following experiments, instead of using l2 norm to evaluate the perturbation, we search the
neighborhood under l∞ norm, which would produce a stronger attack than l2 norm one. The experimental
results indicate that our theoretical analysis may hold for an even stronger attack.

3.1 Toy Data Set and Perturbed Data
We generate four different data sets where we study both the single decision boundary case and the double
decision boundary case. The first pair of datasets are in 2D space and the second pair is in 3D. We aim to
provide empirical evidence for the claim ii) in the Corollary 1 using the single decision boundary data, having
observed that one can sufficiently reduce Rnoradv , allowing one directly compare Radv(f, ε) and Rinadv(f, 2ε). We
aim to provide empirical evidence for the claim i) in the Corollary 1 using double boundary, since Rnoradv can
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Table 2: 3D Adversarial risk comparison

Single Boundary f fadv fnor

ε Radv RHS Radv RHS Radv RHS Rinadv(2ε) Rnoradv Rstd

0.1 0.0450 0.0992 0.0410 0.092 0.0470 0.1002 0.0959 0.0050 0.0050

0.2 0.1139 0.2297 0.0999 0.229 0.1099 0.2143 0.1929 0.0100 0.0199

0.3 0.1550 0.3106 0.136 0.3216 0.1540 0.2852 0.239 0.0080 0.0265

0.4 0.2089 0.3765 0.1680 0.3889 0.2059 0.3579 0.26 0.0080 0.0193

0.5 0.247 0.4910 0.1860 0.4404 0.250 0.4104 0.252 0.0040 0.0174

0.6 0.2700 0.5910 0.2179 0.5198 0.257 0.417 0.257 0.0090 0.0153

0.7 0.2600 0.6057 0.2009 0.7571 0.2731 0.4224 0.273 0.0030 0.0139

0.8 0.2329 0.6775 0.1670 0.5630 0.2339 0.4083 0.2329 0.0020 0.0129

Double Boundary f fadv fnor

ε Radv RHS Radv RHS Radv RHS Rinadv(2ε) Rnoradv Rstd

0.1 0.0649 0.1654 0.0789 0.153 0.0759 0.1654 0.1540 0.0130 0.0140

0.15 0.1460 0.3065 0.1280 0.2949 0.1510 0.3026 0.272 0.0220 0.0270

0.2 0.1700 0.3858 0.1370 0.3341 0.1670 0.3541 0.3040 0.0170 0.0170

0.25 0.2049 0.4608 0.1500 0.4203 0.2099 0.4486 0.361 0.0210 0.0210

0.3 0.2159 0.4740 0.1810 0.4208 0.2119 0.4450 0.3289 0.0190 0.0190

0.35 0.275 0.5176 0.2039 0.5289 0.2750 0.4830 0.356 0.0110 0.0130

0.4 0.3000 0.6051 0.2069 0.5325 0.3040 0.6593 0.3690 0.0520 0.0080

not be sufficiently reduced using a simple classifier, since decision boundary is complicated.
For the 2D case, we sample training data uniformly from a unit circle C1 : x2

1 + x2
2 = 1. For the single

decision boundary data set, we set

y = 21(x1 > 0)− 1 (Single Decision Boundary)

y = 21(x1x2 > 0)− 1 (Double Decision Boundary)

The visualization of the dataset is in Figure 3 a) and b). In particular, we set unit circle C1 has ∆ = 1, we
set the perturbation budget to be ε ∈ [0.01, 0.3]. And the normal direction is alone the radius of the circle.

In the 3D case, we set the manifold to beM : x3 = 0 and generate training data in region [−π, π]× [−π, π]
on x1x2-plane. We set

y = 21 [x1 > sin(x2)]− 1(Single)

y = 21 [(x1 − sin(x2))x2 > 0]− 1(Double)

9



a) 2D Single
decision boundary

b) 2D Double
decision boundary

c) 3D Single
decision boundary

d) 3D Double
decision boundary

Figure 3: In this figure, we show our four toy data set. On the left side is 2D data set on a unit circle. The
single decision boundary data is linearly separated by the y-axis. And in the double decision boundary case,
the circle is separated into 4 parts with x and y-axis. On the right side is the 3D data set. The data is
distributed in a square area on x1x2-plane. In the single decision boundary example, the data is divided
by the curve x1 = sin(x2). And in the double decision boundary situation, we add the y-axis as the extra
boundary.

Figure 3 c) and d) show these two cases. For the single decision boundary example, due to the manifold
being flat, we have ∆ =∞, we explore the ε value in range [0.1, 0.8]. For the double decision boundary, the
distance to the decision boundary is half of the distance in the single boundary case. Therefore, we set the
range of perturbation to be [0.1, 0.4].

3.2 Algorithm
To empirically estimate the decomposition of adversarial risk, we need to generate adversarial data alone
different directions, i.e. the normal direction risk Rnoradv , the in-manifold risk Rinadv and the general adversarial
risk Radv. For general adversarial risk, we evaluate risks on perturbed example xadv computed by Projected
Gradient Descent algorithm in [17].

By the definition of toy data sets, we know that the dimension of ambient space is 1. The normal space
at point x can be represented by NxM = {x+ t · v|0 < t < ε}, here v is a unit normal vector. Therefore we
could explicitly compute the normal vector v and select normal direction adversarial data xnor.

We evaluate different components in the inequality in Corollary 1 on three classifiers. The standard
classifier f trained by original training data set, the adversarial classifier fadv trained by Adversarial Training
algorithm in [17] and the classifier trained using adversarial samples generated in the normal direction xnor,
we denote it as fnor. To compute the in-manifold perturbation, we design two methods. The first one is
using grid search to go through all the perturbations in the manifold within the ε budget and return the
point with maximum loss as in-manifold perturbation xin. The second is using PGD method to find a general
adversarial point xadv in ambient space and project xadv back to the data manifoldM. Due to grid-search
being time-consuming, we use the second method in our experiments below. We further compare these two
methods in supplementary materials.

Here we propose a method based on Adversarial Training to compute fnor in Algorithm 1. One thing
worth mentioning here is, instead of using grid search to find the actual xnor, we use an intermediate method
to generate normal data. We randomly choose a point along the normal direction within the ε budget to
be our normal direction perturbed data. This might worsen the normal adversarial risk of fnor, but our
empirical results show that Rnoradv(fnor) still close to 0.

Note in Corollary 1 claim i), we have a component µ(Bε(Z
nor(f, ε)) ∩M) on the right hand side (RHS)

of the inequality. We also give a practical way of estimating such quantity in the empirical study. By the
definition of Znor(f, ε), we first select point xi in training data such that there exists point x′i in Nxi

M s.t
f(x′i) 6= yi to form set Ẑ. Since we uniformly sample points from data manifold, the volume of B2ε(Ẑ) ∩M
is proportional to µ(B2ε(Z

nor(f, ε)) ∩M) which is a set derived by point wise augment Ẑ by a 2ε-ball. In
2D example, this quantity is simply the length of curve segment on unit circle as the volume of B2ε(z) for

10



Algorithm 1 Normal direction Adversarial Training

1: Input: Training data set {xi, yi}ni=1, training iterations K, perturbation budget ε
2: for iterations in 1, . . . ,K do
3: for xi in {xi, yi}ni=1 do
4: Find normal space Nxi(M) for xi.
5: Find vi ∈ Bnorε (xi) such that l(f(xi + vi), yi) 6= 0.
6: xnori ← vi
7: Update fnor with xnori .
8: end for
9: end for

any z ∈ Ẑ. In 3D example, we use area of Ẑ point wise augmented by a 2ε square. We list the RHS value for
2D and 3D datasets in Table 1 and Table 2 for all three classifiers.

3.3 Empirical Results and Discussion
2D Unit Circle We generate 1000 training data uniformly. The classifier is a 2-layer feed-forward network.
Each classifier is trained with Stochastic Gradient Descent (SGD) with a learning rate of 0.1 for 1000 epochs.
Also, since ∆ = 1 for the unit circle, the upper bound of ε value is up to 1. Hence we run experiments for ε
from 0.01 to 0.3. By increasing the ε budget, we also observe that the decision boundary of fnor becomes
perpendicular to the data manifold. In Table 1, the value of Rnoradv(fnor) also confirm our observation. We
leave more discussion and visualization of this phenomenon in the supplementary material.

To verify our results in Corollary 1 claim i). We compute the adversarial risk for three classifiers. And for
the upper bound, we evaluate the component µ(Bε(Z

nor(f, ε)) ∩M) following the description in Section 3.2.
The right hand side value in the inequality is given in Table 1. We could observe that the upper bounds hold
for 2D data.

Since we train fnor to minimize its empirical risk in normal direction. By Table 1, we know Rnoradv(fnor)
is close to zero. Therefore it is reasonable to study claim ii) in Corollary 1 using fnor. The summation of
in-manifold risk and standard risk of fnor certainly upper bounds Radv(fnor).

3D X1X2-plane We generate 1000 training data from the data set. The classifier is a 4-layer feedforward
network. We use SGD with a learning rate of 0.1 and weight decay of 0.001 to train the network. The total
training epoch is 2000.

In Table 2, we list same three classifiers trained on 3D data set. We have Radv been upper bounded by
the right hand side of the inequality in Corollary 1 claim i). The claim ii) also holds in 3D cases. Due to the
limit of the space, we provide visualization of the decision boundary and additional empirical results in the
supplemental material.

4 CONCLUSION
In this work, we study the adversarial risk of the machine learning model from the manifold perspective. We
report theoretical results that decompose the adversarial risk into the normal adversarial risk, the in-manifold
adversarial risk, and the standard risk with the additional Nearby Normal Risk term. We present a pessimistic
case suggesting the additional Nearby Normal Risk term can not be removed in general, without additional
assumptions. Observing that the Nearby Normal Risk term can be wiped out by enforcing zero normal
adversarial risk, our theoretical analysis suggests a potential training strategy that only focuses on the normal
adversarial risk.
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Appendices
A PROOF OF THEOREM 1
Theorem 1 (Risk Decomposition). LetM be a smooth compact manifold in RD, and let data be drawn from
M× {−1, 1} according to some distribution p. There exists a ∆ > 0 depending only on M such that the
following statements hold for any ε < ∆. For any score function f satisfying assumption A,

(i)
Radv(f, ε) ≤ Rstd(f) +Rnoradv(f, ε) +Rinadv(f, 2ε) + NNR(f, ε).

(ii) If Rnoradv(f, ε) = 0, then
Radv(f, ε) ≤ Rstd(f) +Rinadv(f, 2ε)

Proof of i): We first address the existence of the constant ∆ that only depends on M in the theorem
statement.

Definition 5 (Tubular Neighborhood). A tubular neighborhood of a manifoldM is a set N ⊂ RD containing
M such that any point z ∈ N has a unique projection π(z) ontoM such that z − π(z) ∈ Nπ(z)M.

By Theorem 11.4 in [2], we know that there exists ∆ > 0 such that N := {y ∈ RD : dist(y,M) < ∆} is a
tubular neighborhood ofM. This also implies that for any 0 < ε < ∆, the normal line segments of length ε
at any two points x, x′ ∈M are disjoint, a fact that will be used later.

The ∆ guaranteed by Theorem 11.4 is the ∆ referred to in our theorem, and the budget ε > 0 is constrained
to be at most ∆.

Next we consider the left hand side, the adversarial risk:

Radv(f, ε) := E
(x,y)∼p

1(∃x′ ∈ Bε(x) : f(x′)y ≤ 0)

Denote by E(x, y) the event that ∃x′ ∈ Bε(x) : f(x′)y ≤ 0.
We will write the indicator function above as the sum of indicator functions of four events. Specifically,

define by E1(x, y), E2(x, y), E3(x, y), E4(x, y) the following four events:

• E1(x, y): f(x)y ≤ 0.

• E2(x, y): f(x)y > 0 and ∃x′ 6= x ∈ Bε(x) such that x′ − x ∈ NxM and f(x′)y ≤ 0.

For the next two cases, let x′ 6= x ∈ Bε(x) be such that x′ − x /∈ NxM and f(x′)y ≤ 0 (if such an x′
exists). Let x′′ = π(x′) be the unique projection of x′ ontoM. Note that x′′ 6= x. Define:

• E3(x, y): f(x′′)y ≤ 0.

• E4(x, y): f(x′′)y > 0 ⇐⇒ f(x′′)f(x′) ≤ 0.

Lemma 1.
1(E(x, y)) = 1(E1(x, y)) + 1(E2(x, y)) + 1(E3(x, y)) + 1(E4(x, y))

Proof. Assume E(x, y) occurs, i.e, ∃x′ ∈ Bε(x) : f(x′)y ≤ 0. Either x′ = x satisfies the condition (which is
event E1) or some x′ 6= x satisfies the condition.

Now we further divide into the case when f(x)y > 0 and x′− x ∈ NxM (which is event E2), or f(x)y > 0
and x′ − x /∈ NxM. In the latter case, note that x′′ = π(x′) cannot equal x as otherwise x′ − x would be
in the normal space at x, since the projection map is unique inside the tubular neighborhood. Thus x′′ is
well-defined, and it is easy to see that the last two cases are disjoint and cover this remaining case. Thus we
have shown that if E(x, y) occurs, then one of the four disjoint events Ei must occur, proving the lemma.
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Finally we have the following lemma, which completes the proof of the theorem after combining with
Lemma 1.

Lemma 2. The following relation holds between the risk and the expectation of the indicator functions in
Lemma 1

1. E
(x,y)∼p

1(E1(x, y)) = Rstd(f)

2. E
(x,y)∼p

1(E2(x, y)) ≤ Rnoradv(f, ε)

3. E
(x,y)∼p

1(E3(x, y)) ≤ Rinadv(f, 2ε)

4. E
(x,y)∼p

1(E4(x, y)) ≤ NNR(f, ε)

Proof. 1) and 2) follow by definitions of standard adversarial risk and normal adversarial risk, respectively.
Consider the setting of E3(x, y): i.e., f(x)y > 0, the adversarial perturbation x′ is not in the normal direction
(so f(x′)y ≤ 0), and f(x′′)y ≤ 0. Observe that by the triangle inequality, d(x, x′′) ≤ d(x, x′) + d(x′, x′′) ≤
ε+ ε = 2ε, simply because a) x′ is within the ε-ball of x, and b) x′′ is closer to x′ than x.

This means that there is a point x′′ ∈ Bin2ε (x) such that f(x′′)y ≤ 0. The expectation over a random
(x, y) ∼ p of this event is clearly at most Rinadv(f, 2ε) (the inequality need not be tight because x may have
adversarial perturbation within 2ε and also satisfy some other events like E1).

Lastly, by the definition of the NNR, we see that A(x, y) occurs when E1(x, y) or E2(x, y) do not. Also
C(x, y) implies that the event E3(x, y) does not occur. We are now in the situation where x′′ is within 2ε
of x, f(x′)y ≤ 0, and f(x′′)y > 0. But this implies that f(x′′)f(x′) ≤ 0, and since x′ ∈ Bnorε (x′′), it implies
that B(x, y) occurs. Thus all of A(x, y), B(x, y) and C(x, y) occur, which is the definition of NNR.

Proof of ii)
If Rnoradv(f, ε) = 0, we claim that NNR(f, ε) = 0. Setting these two terms to zero in i) proves ii).
Note that although Rnoradv(f, ε) = 0, it does not imply that there are no normal adversarial perturbations

for any x— it just means that the measure of such x with normal adversarial perturbation is zero.
Also note that Rnoradv(f, ε) = 0 does not exclude A(x, y) or C(x, y) from occurring (in fact A occurs for

almost all x). Thus the proof will focus on the measure of points where B(x, y) can occur. We will prove the
following lemma, which will complete the proof of the theorem.

Lemma 3. Let (x, y) be such that B(x, y) occurs, i.e., there exist x′ ∈ Bε(x) and x′′ = π(x) such that
f(x′)y ≤ 0, f(x′′)y > 0 and d(x, x′′) ≤ 2ε. Then C(x, y) cannot occur, i.e., there exists a point w ∈ Bin2ε (x)
such that f(w)y ≤ 0. Consequently, NNR(f, ε) = 0.

Proof. We first claim that if B(x, y) occurs, it must be the case that f(x′′) = 0. Assuming this, if f(x′′) = 0,
then by Assumption A we know there exists an s ∈ Bε(x′′) ∩B2ε(x) such that f(s)y ≤ 0, which imply that
C(x, y) cannot occur. This will complete the proof of the lemma.

To prove that f(x′′) = 0, consider what happens if f(x′′) 6= 0. Assume first that f(x′) 6= 0, and
note that f(x′)f(x′′) ≤ 0. By continuity of f , there exist open neighborhoods U 3 x′′ and V 3 x′ such
that f has the same sign on all of U and the same sign on all of V , i.e., sign(f |U) = sign(f(x′′)) and
sign(f |V ) = sign(f(x′)).

Consider the normal bundle on U defined as the set U ′ = {y ∈M∆ : π(y) ∈ U}. In other words, U ′ is the
union of the normal line segments passing through points in U (hereM∆ denotes the tubular neighborhood
ofM). Note that U ′ is an open set.

Define W ′ = U ′ ∩ V , and W = π(W ′). W ⊂M is an open set, but for every w ∈W , there exists a point
w′ ∈ W ′ ∩ Bnorε (w) such that f(w′)f(w) ≤ 0. Therefore there exists anormal adversarial perturbation for
every point in W . Since the measure of W is not zero, this contradicts the fact that Rnoradv(f, ε) = 0.

The proof is completed by observing that in the remaining case when f(x′′) 6= 0 but f(x′) = 0, there must
exist (by assumption A) a point w near x′ such that f(w) 6= 0 and f(w)y < 0. This lands us in the previous
case, which we showed contradicts the hypothesis that Rnoradv(f, ε) = 0.
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Remark: In Corollary 1, µ(Znor(f, ε) ∩B2ε(Z
nor(f, ε)) is the NNR under deterministic case. Therefore,

Corollary 1 follows directly from the proof of Theorem 1.

B ADDITIONAL EXPERIMENTS
In the main paper, we leave some experimental results to discuss in this supplementary materials. In the
following section, we will first compare different ways of generating in-manifold attack data. In the later
section, we compare the decision boundary of different classifiers. By visualization of the decision boundary,
we aim to show that the defense training algorithm can defend the model against adversarial examples in the
normal direction implying that the adversarial risk in the normal direction can be controlled.

Also, we need to mark out that when we have a small ε value. The RHS for classifier fnor might be a
little bit smaller than claim ii) in Corollary 1. This is due to the fact that our way of computing measure
µ(Znor(f, ε) ∩B2ε(Z

nor(f, ε)) includes the standard risk Rstd and normal risk Rnor. So the summation of
µ(Znor(f, ε) ∩ B2ε(Z

nor(f, ε)) and Rinadv forms the RHS. When we have a small ε value, the points with
non-zero normal adversarial risk are concentrated near the decision boundary. Since we compute the
µ(Znor(f, ε) ∩B2ε(Z

nor(f, ε)) based on the ratio between the length of line segment (or area of cube in 3D)
and the circumference of unit circle (or area of x1x2-plane unit square), the ratio could be close to zero.
Therefore, we might have the value of RHS smaller than the summation of Rinadv +Rstd +Rnoradv . Aside from
this, RHS still upper bounds Radv in all cases.

B.1 In-Manifold Attack Algorithm
To estimate the in-manifold adversarial risk, we have tested two potential algorithms for generating in-
manifold adversarial examples. We present our observations on these two methods. Our empirical study in
the paper leverage one of the two methods presented below, which generates a more powerful in-manifold
adversarial example.

One way to generate the adversarial samples is by brutal force. We use the grid search method to search
the Binε (x) region and find the maximum loss point in that region. We treat the maximum loss point as the
in-manifold adversarial data. We call this approach the grid search method. Another approach we name as
the projected method. We set the step size of the grid search proportional to the perturbation budget ε. In
general, we search 100 points in 1D cases and 400 points in the 2D manifold. In the projected method, we first
use a general adversarial attack algorithm to generate adversarial data in ambient space. Then we project
the generated adversarial example back to the manifold and return the results as our in-manifold adversarial
data. In the following experiment, we use PGD as our generator of adversarial data in ambient space. Both
methods will find in-manifold data that is adversarial to the given model. The rest of the experiment settings
follow Section 3 in the main paper.

In Figure 4 we plot the after-attack accuracy of these two in-manifold attack methods. The experiments
follow the same setting as the one we described in the main paper. We could observe that the grid search is
slightly stronger in the 3D single boundary case and equivalent to the projection method in the rest of the
cases. In the graph, the after-attack accuracy of the grid search method matches with the projection methods
in the 2D case. And in the 3D case, when the ε is larger than 0.5, then the grid search method achieves
smaller after attack accuracy. This is due to the projection method searching the adversarial example in a
smaller in-manifold ball. In other words, it hasn’t fully explored the ε ball around the original data point.
Therefore we could observe this small gap between these two methods. In the paper, we rely on the grid
search method for generating in-manifold adversarial examples.

Furthermore, we compute the in-manifold risk in Table 1 and 2 using the grid search method. We plot
our results in Table 3 and Table 4. Since the attack performance of the grid search approach is stronger than
the projection approach, the upper bound holds. In Table 3 and Table 4 we could observe this result.

Comparing Table 1 and 1, we could see that Rinadv in Table 3 and Table 4 has similar results. It implies
that the projection method does not underestimate the upper in most cases. For the 3D double boundary
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a) 2D Single
decision boundary

b) 2D Double
decision boundary

c) 3D Single
decision boundary

d) 3D Double
decision boundary

Figure 4: We compare the grid search method and projection method to generate in-manifold attack data.
The first row is after attack accuracy on the 2D data set. The blue line is the accuracy of the projection
approach. Orange is for the grid search method. The ε range is smaller than the range we choose in the
discussion of the main paper. This is because ε-budget is larger than 0.05. The after-attack accuracy remains
zero. The lower row is after attack accuracy on two different 3D data sets.

dataset, the projection method has weaker results but the upper bound still holds. It implies that the upper
bound in Corollary 1 is loose in our study case. We could further prove a tighter upper bound in 1 claim ii).

B.2 Decision Boundary Discussion
In this section, we explain one of our intuitions of deriving this decomposing. In geometry, we know that if
the decision boundary of the classifier is perpendicular to the manifold, then along normal direction, it is
hard to find an adversarial example that can successfully attack the model. Therefore, the general adversarial
risk is owing to tangential or in-manifold direction perturbation. Under this setting classifiers with decision
boundary perpendicular to the manifold in ambient space would have Rnoradv equal zero. And this gives us
claim ii) in Theorem 1. In the following section, we will plot the classifier’s decision boundary in ambient
space to state that our intuition holds on the synthetic data set.

B.2.1 2D Decision Boundary

In the 2D synthetic data set, we plot multiple decision boundaries of fnor in the double decision boundary
case. As we increase the ε budget in the defense algorithm (Algorithm 1 in the paper), the decision boundary
becomes more perpendicular to the unit circle. And it matches the results for Rnoradv(fnor) in Table 1. Around
ε = 0.1, Rnoradv(fnor) achieves the minimum value. And we could observe that the shape of the decision
boundary is perpendicular and matches with the true label.

B.2.2 3D Decision Boundary

In 3D cases, we plot the projection of points in ambient space back to the data manifold x1x2-plane. If the
decision boundary is fully perpendicular to the x1x2-plane, the projection would have a clear separation and
matches with the x2 = sin(x1) boundary in the manifold. If not, we will have a region close to x2 = sin(x1)
with mixing red and blue points or the projection does not match with the in-manifold separation.

We show the results in Figure 5. In the single decision boundary case, only fnor has (nearly) perpendicular
decision boundary. For f , we can observe that the red points step into the region of the blue points and
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Table 3: Computing Rinadv(f
nor) using Grid Search methods for 2D data set

Single Boundary f fadv fnor

ε Radv RHS Radv RHS Radv RHS Rinadv(2ε) Rnoradv Rstd

0.01 0.0110 0.0200 0.0110 0.022 0.0090 0.0180 0.0100 0.0050 0.0050

0.02 0.0130 0.0426 0.0130 0.0425 0.0130 0.0439 0.0280 0.0060 0.0060

0.03 0.0230 0.0499 0.0250 0.0595 0.0230 0.0613 0.0380 0.0120 0.0120

0.05 0.0280 0.0871 0.0300 0.0881 0.0280 0.0843 0.0669 0.0040 0.0040

0.1 0.0709 0.1974 0.0699 0.2026 0.0709 0.1620 0.1300 0.0 0.0040

0.15 0.0979 0.2721 0.1009 0.3243 0.1009 0.3225 0.2209 0.0050 0.0050

0.2 0.128 0.4063 0.126 0.4160 0.128 0.4206 0.2730 0.0050 0.0040

0.25 0.1660 0.498 0.1630 0.5218 0.1660 0.5026 0.3299 0.0040 0.0040

0.3 0.1979 0.6117 0.1979 0.6239 0.1979 0.5005 0.4000 0.0 0.0

Double Boundary f fadv fnor

ε Radv RHS Radv RHS Radv RHS Rinadv(2ε) Rnoradv Rstd

0.01 0.0080 0.0404 0.0060 0.038 0.0070 0.0386 0.0290 0.0030 0.0030

0.02 0.0240 0.0467 0.0230 0.0457 0.0240 0.0594 0.0390 0.0050 0.0050

0.03 0.0510 0.1279 0.0460 0.1309 0.0510 0.1273 0.0839 0.0110 0.0110

0.05 0.0620 0.1545 0.0620 0.1738 0.0629 0.1711 0.121 0.0080 0.0080

0.1 0.1170 0.4037 0.1169 0.5155 0.12 0.3076 0.273 0.0060 0.0060

0.15 0.1850 0.5649 0.1860 0.5619 0.1939 0.5768 0.368 0.0040 0.0040

0.2 0.242 0.8709 0.247 0.82 0.265 0.88 0.5429 0.0060 0.0050

0.25 0.3139 1. 0.3169 1. 0.3239 1. 0.696 0.0080 0.0080

0.3 0.386 1. 0.379 1. 0.394 1. 0.833 0.0070 0.0060

so does the blue points. And the adversarial training classifier fadv has an even worse result, its decision
boundary does not fully match with the x2 = sin(x1) curve inside the manifold, which implies that the
classifier does not have good standard accuracy, which implies the trade-off between robustness and accuracy
for the general robust classifier. And the same results and conclusions hold for the double boundary case.
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a) ε = 0.02 b) ε = 0.03 c) ε = 0.15

Figure 4: In the graph, we first sample 3000 points in whole space and use fnor to classifier these sampled
points. We use red dots and blue dots to mark two different classes. And the decision boundary of the
classifier is easy to see in this setting. From left to right, we increase the ε budget from 0.02 to 0.15 and use
the corresponding normal adversarial data to train the fnor. The decision boundary of fnor is correlated
with the size of ε.

a) Decision Boundary of fadv b) Decision Boundary of f c) Decision Boundary of fnor

a) Decision Boundary of fadv b) Decision Boundary of f c) Decision Boundary of fnor

Figure 5: In this graph we show the projection of data classified with f , fadv and fnor. We sample 5000
points in the tubular space of x1x2-plane. And use f , fadv and fnor to classify these points and mark with
red and blue dots. If the point is in the ambient space, we project them back to the x1x2-plane. The first
row are f , fadv and fnor trained with 3D single boundary synthetic data set. The second row is classifiers
trained with the double boundary synthetic data set.
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Table 4: Computing Rinadv(f
nor) using Grid Search methods for 3D data set

Single Boundary f fadv fnor

ε Radv RHS Radv RHS Radv RHS Rinadv(2ε) Rnoradv Rstd

0.1 0.0450 0.0974 0.0410 0.098 0.0470 0.0932 0.0889 0.0050 0.0050

0.2 0.1139 0.2062 0.0999 0.2201 0.1099 0.2093 0.1879 0.0100 0.0199

0.3 0.1550 0.3957 0.136 0.3557 0.1540 0.3482 0.3020 0.0080 0.0265

0.4 0.2089 0.5124 0.1680 0.5008 0.2059 0.4729 0.375 0.0080 0.0193

0.5 0.247 0.6057 0.1860 0.5405 0.250 0.6354 0.477 0.0040 0.0174

0.6 0.2700 0.8444 0.2179 0.6828 0.257 0.7169 0.5569 0.0090 0.0153

0.7 0.2600 1. 0.2009 0.8673 0.2731 0.8004 0.651 0.0030 0.0139

0.8 0.2329 1. 0.1670 1. 0.2339 0.8774 0.702 0.0020 0.0129

Double Boundary f fadv fnor

ε Radv RHS Radv RHS Radv RHS Rinadv(2ε) Rnoradv Rstd

0.1 0.0649 0.1688 0.0789 0.1517 0.0759 0.1624 0.1510 0.0130 0.0140

0.15 0.1460 0.2581 0.1280 0.228 0.1510 0.2405 0.2099 0.0220 0.0270

0.2 0.1700 0.3476 0.1370 0.3174 0.1670 0.3441 0.2940 0.0170 0.0170

0.25 0.2049 0.4700 0.1500 0.4300 0.2099 0.4576 0.37 0.0210 0.0210

0.3 0.2159 0.5745 0.1810 0.5240 0.2119 0.5331 0.4170 0.0190 0.0190

0.35 0.275 0.5756 0.2039 0.5469 0.2750 0.555 0.4280 0.0110 0.0130

0.4 0.3000 0.76 0.2069 0.7255 0.3040 0.8133 0.523 0.0520 0.0080
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