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Abstract. We presentGazeRadar, a novel radiomics and eye gaze-guided
deep learning architecture for disease localization in chest radiographs.
GazeRadar combines the representation of radiologists’ visual search pat-
terns with corresponding radiomic signatures into an integrated radiomics-
visual attention representation for downstream disease localization and
classification tasks. Radiologists generally tend to focus on fine-grained
disease features, while radiomics features provide high-level textural in-
formation. Our framework first ‘fuses’ radiomics features with visual fea-
tures inside a teacher block. The visual features are learned through a
teacher-focal block, while the radiomics features are learned through a
teacher-global block. A novel Radiomics-Visual Attention loss is pro-
posed to transfer knowledge from this joint radiomics-visual attention
representation of the teacher network to the student network. We show
that GazeRadar outperforms baseline approaches for disease localiza-
tion and classification tasks on 4 large scale chest radiograph datasets
comprising multiple diseases. 1
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1 Introduction

Medical image interpretation is a complex visuo-cognitive task that requires
an understanding of a disease’s textural patterns and locations in the image.
Previous studies have demonstrated the importance of visual search patterns,
obtained from eye-gaze tracking of radiologists, in disease classification, local-
ization [25,9,17,22,41,39] and segmentation [18]. Despite the spatially-rich in-
formation, gaze-derived attention regions do not always coincide with the ac-
tual disease regions. On the other hand, handcrafted radiomics features con-
tain context-rich textural information that focuses on abnormalities, primarily
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disease-specific features, manifested both within and surrounding the disease re-
gions [30]. Several computer-aided diagnostic techniques focus on independently
utilizing visual patterns and radiomics features [33,27,29]. While radiomics fea-
tures have long been used for different diagnostic tasks, the concept of coupling
textural features with visual attention is still unexplored.

Radiologists’ visual search patterns are honed through years of training, and
different levels of expertise often leads to variations in these search patterns, even
on the same image [36,37]. Studies have shown that disease diagnosis can be en-
hanced by taking advantage of gaze patterns from multiple radiologists [2,35,16].
While Bhattacharya et al. [3] show that transformer-based architectures can
leverage human visual attention from a single radiologists’ gaze patterns for
diagnostic tasks, they do not investigate how to fuse multiple readers’ visual
search patterns in a deep learning setting. Simple averaging or majority voting
may lead to dispersion of attention regions or losing information regarding gaze
variations.

Motivation and Overview. To address the aforementioned limitations, we
propose a novel approach that couples radiomics features with visual search
patterns from multiple radiologists to infer the radiomics-visual attention, and
leverages it in a deep learning framework for improved disease detection and
diagnosis. The motivation for our approach stems from a) the importance of
multiple radiologists’ gaze patterns in medical image interpretation, b) the im-
portance of co-learning visual attention and textural attention, and c) distillation
ability of this radiomics-visual attention knowledge to deep learning architec-
tures for downstream classification and localization tasks. A global-focal learning
paradigm to mimic radiologists’ cognitive behavior has shown promising results
in disease diagnosis [3]. This learning paradigm presents the opportunity to in-
corporate radiomics features as complementary attributes into the global-focal
framework. Radiomics features provide a representation of disease related imag-
ing changes as a global context, while visual attention can help characterize de-
tailed fine-grained features into a focal context. We use this as a motivation to
design a modified global-focal architecture that integrates textural information
and human visual cognition with self-attention-based learning of transformers.

The main contributions of this paper are: (1) We present GazeRadar, a novel
global-focal student-teacher architecture for disease localization based on ra-
diomics information and visual search patterns. The teacher block learns a joint
representation of radiomics and visual attention features. This representation is
then used to train a student block for downstream classification and localization
tasks. (2) We develop novel Radiomics Attention Fusion and Gaze Attention
Fusion strategies to fuse radiomics features and gaze features, respectively. (3)
We design a novel Radiomics-Visual Attention Loss for transferring the joint
radiomics-visual knowledge from the teacher block to the student block. To the
best of our knowledge, this is the first work that incorporates both, radiomics
and radiologists’ search patterns into a decision-making pipeline.
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Fig. 1: GazeRadar: A radiomics-visual fusion architecture.

2 Methodology

Figure 1 presents an overview of the proposed GazeRadar architecture. There
are two primary network blocks, the student and the teacher block. Each of these
blocks consist of a global-focal network. The teacher-focal network learns human
visual attention from the tracked eye gaze points of radiologists, and the teacher-
global network learns attention from radiomics features. The teacher block com-
prises two sub-blocks, namely Gaze Attention Fusion (GAF) and Radiomics
Attention Fusion (RAF). GAF module fuses visual attention regions from mul-
tiple radiologists to provide a consolidated visual attention region. This region is
used for pre-training the teacher, referred to as Fused-Human Visual Attention
Training (F-HVAT). Note that in the inference stage, we do not need eye-gaze
data. The RAF module fuses different radiomics features using cross-attention.
RAF attempts to learn ‘radiomically relevant’ regions from the fused radiomics
features. The student network learns radiomics-visual attention from the teacher
network. Henceforth, we use the following notations: g: global, f: focal, D: prob-
ability distribution, L: loss functions, N : normal distribution, and the following
abbreviations: GAF: Gaze Attention Fusion, RAF: Radiomics Attention Fusion,
HVAT: Human Visual Attention Training, F-HVAT: Fused-HVAT, TWC: Two
Way Cross, RVAL: Radiomics-Visual Attention Loss.
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2.1 Teacher Block

The teacher network is designed to fuse the visual attention maps into a single
representation and couple it with the radiomics attention map for downstream
tasks. The teacher-focal block learns visual attention features from the eye gaze
patterns of radiologists. The search patterns of different radiologists are non-
uniform and hence the visual attention map may spread across different sections
of the lungs, as shown in Figure 1.d.* in Figure 1. Figure 1.d.1 are eye-gaze points
from different radiologists, shown in different colors. In Figure 1.d.2 - 1.d.6, the
visual attention maps of 5 different radiologists are shown. The teacher-global
block learns the radiomics attention.

Global-Focal network. The global and focal networks are variants of shifting
window transformer architecture, inspired by [3]. In the teacher block, the global
network is the RAF, and the focal network is pre-trained with GAF. The global
blocks are represented as g, and the focal blocks are represented as f . There
are two parallel global blocks connected with a focal block. There are k-sets of
global blocks, represented as gki , where i ∈ {0, 1} and k ∈ {0, 1}, cascaded with
four focal blocks represented as fi, where i ∈ {0, 1, 2, 3}. Here, i is the number of
shifting blocks, and k is the number of radiomics features. These blocks are con-
nected by a Two Way Cross (TWC) module, represented as Ci(x, y), which is a
cross-attention block between gk0 -f1, and gk1 -f3. TWC module is a cross-attention
between x and y, shown as Ci(x, y) = MLP (LN1(MHA(LN0

0 (x), LN
1
0 (y)) +

(x+y)))+z, where z = MHA(LN0
0 (x), LN

1
0 (y))+(x+y). Here, MHA is Multi-

head attention, LN is Layer Norm and MLP is Multi-layered perceptron. The
C0(ĝ0, f1) is TWC0 layer, and C1(ĝ1, f3) is TWC1 layer. Here, ĝ0 =

∑k
i=0 λ

int
i ∗gi0,

and ĝ1 =
∑k

i=0 λ
final
i ∗ gi1, where λint

k and λfinal
k are the intermediate and final

weight parameters for k radiomics features, respectively.

Gaze Attention Fusion. The visual attention maps from n radiologists (shown
in Figure 1.b.1), represented as Ai, where i ∈ {1, 2, ..., n}, are first obtained as
explained in Section 4 . These maps are generally localized in different sections of
the raw image. The teacher block is pre-trained with single (HVAT1 and HVAT2,
jointly termed as HVAT) and multiple (F-HVAT) radiologists’ eye gaze, also
shown in Figure 1.a and Figure 1.b, and discussed in Section 4. Then, the raw
image is fed to this pre-trained teacher to produce a predicted visual attention
map, represented as Apred. The visual attention maps from multiple radiologists,
Ai, are fused with Apred as the reference region. This can be defined as weighted
linear minimization of the distances between multiple probability distributions.
The predicted probability distribution is represented as p ∼ N (µpred, σ

2
pred),

and the probability distribution of visual attention maps from radiologists are
represented as qi ∼ N (µi, σ

2
i ). Here, [µpred, σpred] are the mean and standard

deviation of the predicted distribution, and [µi, σi] are the mean and standard
deviation of the distribution from visual attention regions. The n-Gaze Attention
Loss (n-GAL) is the weighted distance between the p and qi, represented as
Ln−GAL = − ln(dB), and dBC =

∑n
i=1 αi ∗

√
p.qi. Here, dBC is a variation of

Bhattacharyya coefficient [4,5], and αi is the parameter for weighting.
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Radiomics Attention Fusion. The radiomic features are obtained from the
raw images, I, represented as Ri = Fi(I), where i ∈ {0, 1, ..k}, as shown in
Figure 1.a. Here, Ri are the radiomics features, Fi are the set of radiomic filters
applied to I. The Ri are fed to the global networks, shown as, Oi

0 = gi0(Ri).

This output set is fused, as Ô0 =
∑k

i=0 λ
int
i Oi

0 and fed to C0 layer. The output
of this C0 layer is represented as c0, which is then provided to the next global
set to obtain the output set, Oi

1 = gi1(c0). This output set is also fused, Ô1 =∑k
i=0 λ

final
i Oi

1, and fed to C1.

2.2 Student Block

Global-Focal network. The student block is a global-focal network where two
global layers are stacked in-parallel with four focal layers. Similar to the teacher,
the global and focal layers of the student are variants of shifting window trans-
formers. The two global blocks are represented as gsi , i ∈ {0, 1}, and the focal
blocks are represented as fs

i , i ∈ {0, 1, 2, 3}. The gs0 and fs
1 are fed into TWCs

0 in
student block, represented as cs0 = Cs

0(g
s
0(tg(I)), fs

1 (f
s
0 (tf (I)))). Here {tg, tf} are

the augmentations of global and focal blocks respectively. The output cs0 is fed
to the subsequent global gs1, and focal fs

2 layers. The final output from TWCs
1 is

represented as cs1 = Cs
1(g

s
1(c

s
0), f

s
3 (f

s
2 (c

s
0))).

Training. The teacher block is updated with the student block using exponen-
tial moving average (EMA). The output of the student block is represented as
cs1, and the output of the teacher block is represented as c1. The EMA is rep-
resented as θc1 = δ ∗ θ

′

c1 + (1 − δ) ∗ θcs1 . Here, δ is the smoothing coefficient,

θ
′

c1 is the parameter of the teacher block, θcs1 is the parameter of the student
block, and θc1 is the updated parameter of the teacher block. The downstream
tasks are classification and localization. Consequently, classification heads and
detection heads are appended to the output of the student block cs1. The clas-
sification head outputs predicted logits of shape [B,N ], where B is the batch
size during training, and N is the number of classes in the datasets. The bound-
ing box head outputs bounding boxes of shape [B, 4], where B is the batch size
mentioned before, and 4 is the number of key-points of bounding boxes, in this
case, [xmin, ymin, xmax, ymax]. A cross-entropy loss is applied for classification,

shown as, Lcls =
∑B

i=0 ŷi log(yi), where y is the predicted logit, and ŷ is the
ground-truth logit. For bounding box regression, a weighted addition of Gener-
alised Intersection over Union (GIoU) and Mean Squared Error (MSE) loss is
applied. This loss is represented as, Lbbox = λb

1 ∗ LGIoU + λb
2 ∗ LMSE , where

(λb
1, λ

b
2) are the weights for adding the bounding box losses. Here, λb

1+λb
2 should

be equal to 1. The final loss is represented as:

L = λl
0 ∗ Lcls + λl

1 ∗ Lbbox + λl
2 ∗ Lrval (1)

where (λl
0, λ

l
1, λ

l
2) are the weights for adding the individual loss components for

final loss, and λl
0 + λl

1 + λl
2 = 1. Lrval is the Radiomics-Visual Attention Loss

(RVAL), described in the following subsection.
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2.3 Radiomics-Visual Attention Loss

The teacher outputs a joint representation of radiomics, and visual attention fea-
tures. The final TWC1 layer C1 takes both ĝ1 and f3 as input. The ĝ1 is the fused
radiomics attention representation, and f3 is the visual attention representation.
The output from this final TWC1 layer, shown as c1 = C1(ĝ1, f3), is the joint
radiomics-visual attention feature representation. As shown in Figure 1.c, the
radiomics attention features are represented as p ∼ D1, and the visual attention
features are represented as q ∼ D2, where p and q are probability distributions.
The joint representation of these distributions can be represented as P ∼ D12.
From Figure 1.c, this output is represented as X ∼ D. We propose a novel loss
function Lrval that calculates the distance between these probability distribu-
tions, represented as:

Lrval = − ln

(∫ √
X (ĉs1) ∗ P(ĉ1)

)
(2)

where ĉs1 is the feature map obtained after post-processing the output from the
TWCs

1 of the student block, and ĉ1 is the feature map obtained after post-
processing the output from the TWC1 of the teacher block.

3 Datasets and Environment

We use 4 datasets for developing and validating our proposed techniques: 1)
RSNA Pneumonia Detection Challenge dataset [32] consisting of radiographs
with presence and absence of pneumonia, 2) SIIM-FISABIO-RSNA COVID-
19 Detection dataset [19] for COVID-19 classification and localization, 3) NIH
Chest X-rays [38], and 4) VinBigData Chest X-ray Abnormalities Detection
dataset [28] comprising 14 common thorax diseases. The training, validation,
and testing splits are provided in Table 1. For experimentation, we used Google
Cloud Platform (GCP) with TPUs from TensorFlow Research Cloud (TRC). All
experiments are in TensorFlow and Keras v2.8.0.

4 Results and Discussion

Implementation. The HVAT comprises 2 stages, namely HVAT1 and HVAT2.
During HVAT1, the teacher network is pre-trained on eye-gaze data from [15,10]
which contains single radiologist eye-gaze points on 1083 chest x-rays from the
MIMIC-CXR [14,10] dataset. For HVAT2, the teacher network is fine-tuned on
similar eye-gaze data from REFLACX [20,21,10] which contains single radiologist
eye-gaze points on 2507 chest x-rays from the MIMIC-CXR [14,10] dataset.
Finally, for F-HVAT, the teacher network is further finetuned on n-radiologists’
eye gaze points (in this case n = 5) with GAF, as explained in Section 2, for 109
chest x-rays from REFLACX [20,21,10] dataset. The attention regions, shown
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Table 1: Quantitative Comparisons. MSE (↓) and AUC (↑) are shown for
RSNA (Train=21158, Val=3022, Test=6045), SIIM (4433, 633, 1266), NIH (688,
98, 196) and VBD (47539, 6791, 13582) datasets. The comparisons are shown
on baseline architectures and GazeRadar.

Datasets RSNA [32] SIIM [19] NIH [38] VBD [28]

Baselines MSE AUC MSE AUC MSE AUC MSE AUC

RN-R50 [24] 03.38 90.18 10.83 82.89 05.67 54.13 02.17 95.98
RN-R101 [24] 02.82 94.57 10.47 82.57 05.87 63.61 01.97 96.65
RN-R152 [24] 03.26 91.00 10.44 83.54 07.16 62.21 01.91 96.51
CN-R50 [40] 24.74 60.66 27.84 69.89 19.85 51.06 35.11 91.51
CN-R101 [40] 05.86 77.83 45.94 38.98 30.84 45.73 37.43 65.33
CN-R152 [40] 06.57 80.68 28.51 68.55 21.18 50.37 43.13 79.78
YOLOv3 [31] 02.73 93.12 29.64 72.29 04.45 56.77 07.05 83.28
YOLOv5 [13] 04.15 72.63 12.93 72.29 04.50 56.62 07.05 83.28
ViT-B16+DH [7] 04.13 80.53 13.28 72.23 05.64 57.33 11.04 89.70
ViT-B32+DH [7] 05.08 75.49 13.32 72.84 05.22 55.53 14.49 92.76
ViT-L16+DH [7] 04.88 81.92 13.34 72.39 05.50 57.10 10.73 91.68
ViT-L32+DH [7] 05.12 72.42 13.30 72.43 05.12 56.54 10.30 88.90
CCT+DH [12] 03.99 79.28 12.89 73.50 04.54 56.77 03.83 91.20
DeTr [6] 04.45 68.97 12.96 72.29 04.63 56.77 07.06 83.28
SwinT0+DH [26] 06.35 93.51 07.14 74.42 04.57 64.10 14.87 92.50
SwinT1+DH [26] 07.09 93.75 06.97 75.46 04.45 78.70 15.41 91.44

Ours 03.56 96.27 06.56 99.36 08.57 98.68 12.12 94.26

as heatmaps (Figure 1.b.3), are human attention based diagnostically important
areas. A Gaussian filter, represented as G, with standard deviation, σ = 64,
generates the attention heatmaps. The contours from these attention heatmaps
are selected with a thresholding value of λ̂ = 140. Then, bounding boxes are
generated from the contour with the largest area, shown in Figure 1.b.3. All the
images are resized to 256× 256 pixels. During HVATi, and F-HVAT, the output
of the teacher network is a [B̂, 2] tensor of probability values (representing two
classes: normal and disease) and a [B̂, 4] tensor of keypoints. Here, B̂ is the batch
size during HVATi and F-HVAT.

We use an Adam optimizer with a batch size of 64 for 50 epochs. The initial
learning rate (LR), set to 1 × 10−2, is scheduled with an exponential scheduler
with decay steps = 105 and decay rate = 0.2. There is an early stopping criteria
with patience = 20 to minimize the validation loss. GazeRadar follows similar
training settings as the baselines. Also, in RAF, we have the radiomic features,
Ri generated from Fi. In our experiments, i ∈ {0, 1} where F0 is Local Bi-
nary Pattern (LBP) [11] and F1 is an orthogonal Gabor filter [8], also shown in
Figure 1.a.

Comparisons and Performance Metrics. GazeRadar is compared against
standard localization architectures like variants of RetinaNet [24], CenterNet [40],
YOLOv3 [31], YOLOv5 [13], and recent vision transformer architectures ap-
pended with a detection head. The vision transformer architectures used for
comparisons are ViT [7], CCT [12], DeTR [6], and Swin Transformer [26]. To
measure the performance of GazeRadar for both classification and localization
tasks, we use Mean Squared Error (MSE) and Area-under-Curve (AUC). As
shown in Table 1, GazeRadar outperforms state-of-the-art (SOTA) on 3 datasets
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Fig. 2: Qualitative Results: Example localization results are shown on 3 dis-
ease types, namely Pneumonia (1.*), Infiltrate (2.*) and Cardiomegaly (3.*),
for GazeRadar (*.a), RetinaNet (*.b) and ViT (*.c) architectures. Here, *.d are
the ground-truth localizations.

(RSNA, SIIM, NIH), and achieves comparable results on VBD. We observe that
GazeRadar outperforms the majority of vision transformer based architectures
on all the datasets.

Ablation studies. In Table 2, we show the performance of different components
of GAF and RAF. F-HVAT is pre-trained with HVAT1 and HVAT2. GAF is a
component of F-HVAT. Hence, we independently evaluate HVAT1 and HVAT2.
From Table 2, for GAF, we see that HVAT2 performs significantly better than
HVAT1 for classification with comparable localization performance. We therefore
infer that only radiomics attention, without RVAL, is not well-suited for trans-
ferring information from teacher block to student block. We also show, in the
Supplementary, different components of the GazeRadar architecture and observe
how appending different modules affects the system performance. The ablations
fundamentally explain the effects of individual global-focal components, adding
a teacher network, and then further training using RVAL.

Qualitative Analysis. In Figure 2, we show localization results of GazeRadar
in comparison to RetinaNet and ViT for three different disease types: pneumonia,
infiltrate, and cardiomegaly. 1.* represents Pneumonia, 2.* represents Infiltrate,
and 3.* represents Cardiomegaly samples. *.a are the results from GazeRadar,
*.b are the results from RetinaNet, *.c are the results from ViT, and *.d are the
ground truth bounding boxes. We observe that the predicted bounding boxes
overlap better with the ground truth for GazeRadar as compared with the
baseline methods.

Table 2: GAF-RAF Ablations. MSE (↓) and AUC (↑) for NIH and SIIM
datasets.

DS NIH [38] SIIM [19] DS NIH [38] SIIM [19]
GAF MSE AUC MSE AUC RAF MSE AUC MSE AUC

HVAT1 07.78 60.64 14.61 97.37 RAF 17.63 61.43 17.55 96.56
HVAT2 08.39 89.77 18.60 98.38 S+RAF 08.17 59.86 23.64 80.18
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5 Conclusion

This paper presents GazeRadar, a novel architecture that fuses radiomics and
visual attention to learn a joint representation. This radiomics-visual attention
is leveraged to train a student block for classification and localization tasks.
A novel Radiomics-Visual Attention Loss (RVAL) is proposed to calculate the
distance between the student block attention distribution and the joint repre-
sentation. We demonstrated the feasibility of this approach with two radiomics
features; however, as described in the methodology, this may be readily extended
to other features and also to 3D imaging modalities. Our results demonstrate
that radiomics and radiologists’ visual search patterns harbor important comple-
mentary cues regarding disease characteristics and its location; these features can
be leveraged in a deep learning framework using a student-teacher architecture.
Future work will involve incorporation of RVAL in lung nodule classification [1]
and computer-assisted intervention tasks [23,34].
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