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A B S T R A C T   

Opioid overdose (OD) has become a leading cause of accidental death in the United States, and overdose deaths 
reached a record high during the COVID-19 pandemic. Combating the opioid crisis requires targeting high-need 
populations by identifying individuals at risk of OD. While deep learning emerges as a powerful method for 
building predictive models using large scale electronic health records (EHR), it is challenged by the complex 
intrinsic relationships among EHR data. Further, its utility is limited by the lack of clinically meaningful 
explainability, which is necessary for making informed clinical or policy decisions using such models. In this 
paper, we present LIGHTED, an integrated deep learning model combining long short term memory (LSTM) and 
graph neural networks (GNN) to predict patients' OD risk. The LIGHTED model can incorporate the temporal 
effects of disease progression and the knowledge learned from interactions among clinical features. We evaluated 
the model using Cerner's Health Facts database with over 5 million patients. Our experiments demonstrated that 
the model outperforms traditional machine learning methods and other deep learning models. We also proposed 
a novel interpretability method by exploiting embeddings provided by GNNs to cluster patients and EHR features 
respectively, and conducted qualitative feature cluster analysis for clinical interpretations. Our study shows that 
LIGHTED can take advantage of longitudinal EHR data and the intrinsic graph structure of EHRs among patients 
to provide effective and interpretable OD risk predictions that may potentially improve clinical decision support.   

1. Introduction 

The United States is experiencing an opioid crisis, with an estimated 
10 million people aged 12 or older misusing opioids in 2019 [1], and 
130 deaths a day from opioid overdose (OD) [2]. The estimated eco-
nomic burden of the opioid epidemic is approximately 78.5 billion 
dollars per year [3]. Early intervention to reduce the risk of OD can help 
to decrease opioid-related mortality, and building a predictive risk 
model for OD can help to inform interventions. Large-scale electronic 
health records (EHRs) provide enormous amounts of data that can be 
used to build data-driven models. Such models can identify patients at 
high risk of OD and reveal critical explanatory knowledge for the 
prediction. 

In recent years, deep learning methods have gained popularity in 
building predictive models to assist clinical decision support. Sequential 
models such as the recurrent neural network (RNN) have been widely 
applied to diseases such as Parkinson, Alzheimer's, and heart disease 
[4–6] for their ability to incorporate the temporal effects of disease 
development. Advanced RNN models like long short-term memory 
(LSTM) models have been shown to have high performance in opioid 
related disease prediction [7–9]. 

In addition to the temporal dynamics of EHR data, complex in-
teractions and extreme sparsity of features are also major challenges for 
developing predictive models with EHR data. Graph neural networks 
(GNNs) are frequently used in building predictive models on data that 
can be described by graphs [10], and hold the potential to address the 
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above challenges. Traditional deep neural networks such as convolu-
tional neural networks (CNNs) and RNNs assume an underlying domain 
with a regular structure, but for graph-structured data, the local 
neighborhood of each node does not have a fixed connectivity. Various 
types of GNNs have been proposed to address this issue, such as graph 
convolutional networks (GCN) and graph attention transformers (GAT), 
resulting in powerful predictive models [11–13]. During the learning 
phase of GNNs, the feature representation of each node is iteratively 
updated based on information from itself and from neighbors. The in-
formation from a neighbor, called the message, is a linear trans-
formation of the neighbor's representation in its previous iteration. 
Furthermore, heterogeneous and relational GNN models can set 
different types to nodes and edges and assign different parameters to 
them, then learn the variation with different parameters depending on 
the type of edge within the graph. With these more complex structures, 
rich information can be encoded in graphs, which achieve better pre-
diction performance [14–16]. We envision that GNN can be useful in 
clinical practice for two reasons. The complex relations between patients 
sharing similar health conditions and diagnoses can be represented by a 
graph, which can be well represented by the graph structure of a GNN 
model. Moreover, GNN is effective in tackling the sparsity problem in 
EHR data. In the traditional tabular method to represent EHR data, the 
input data are extremely sparse as an indivieual patient is mostly asso-
ciated with a a limited set of clinical codes or tests while a large number 
of features are available in the EHR database. GNN can help to address 
the sparsity issue since patients are not connected to features that are 
absent in their encounters. 

Because of the difficulty in interpreting complex deep learning 
models and the demand to find clinical meanings from the models, along 
with the development of more advanced deep learning models, many 
efforts have been made to interpret the models and give clinically 
meaningful explanations. Some methods attempt to give explanations 
indirectly; for example, model-agnostic methods use an interpretable 
model to simulate deep learning models and use the interpretable model 
as a proxy to provide explanations [17]. Other interpretation methods 
measure feature importance based on the changes in prediction per-
formance after manipulating distributions of input feature values, such 
as the Local Surrogate model (LIME) [18] and the permutation impor-
tance method [19]. 

In this work, we propose a longitudinal and graph integrated 
(LIGHTED) prediction model using electronic health records that com-
bines LSTM and GNN for predicting opioid overdose risk in patients who 
have been prescribed opioid medications. LIGHTED takes advantage of 
not only the longitudinal history of patients' EHRs, but also the knowl-
edge learned from relationships among patients, encounters, and 
different types of features. Our experimental results demonstrate that 
our sequential deep learning model provides superior performance, with 
a F1 score higher than traditional machine learning methods as well as 
other state-of-the-art deep learning models. We also propose a novel 
interpretability approach in which we group features and patients 
respectively using GNN representations, generating less redundant and 
more semantically meaningful feature clusters for clinical in-
terpretations and informing clinical decision support. 

2. Dataset description 

2.1. Data source 

We chose Cerner's Health Facts database [20] as our data source to 
build the dataset. It is one of the largest EHR databases, with de- 
identified data from >65 million patients and over 600 different 
healthcare facilities in the United States. It includes records of patient 
demographics, encounters, diagnoses, prescriptions, procedures, labo-
ratory tests, and medical billing information. 

2.2. Study population 

In this study, we use EHR data from January 1, 2008 to December 31, 
2017. For the patient cohort, we extracted all patients who were pre-
scribed medications containing active opioid ingredients. We used the 
Anatomical Therapeutic Chemical (ATC) level 3 code ‘N02A’ and cate-
gory description ‘opioid’ to retrieve all relevant active ingredients from 
DrugBank 5.1.4 [21]. To define opioid poisoning, we used a group of 
ICD-9 and ICD-10 codes identified by Moore [22] to select patients with 
opioid overdose. 

The distributions of the first opioid medication exposure between 
non-OD and OD patients are not identical; compared to OD patients, 
non-OD patients have a much higher proportion of patients younger 
than 16 years and a much lower proportion of patients who are older 
than 66 years [23,24]. To make the distribution more consistent and also 
to prevent bias toward age, we filtered the patients to include those 
between 16 and 66 [8]. 

Patients with a cancer diagnosis were excluded. They often have 
acute and varying symptoms of pain due to disease or treatment which 
requires opioid therapy for pain control. As medical practitioners and 
public health leaders have largely focused on guidelines for patients 
with chronic non-cancer pain, we excluded patients with cancer di-
agnoses from our model [25]. We identified cancer diagnoses based on 
cancer related ICD-9 [26] and ICD-10 codes [27] (Supplementary 
Table 2). The flowchart for patient selection is shown in Fig. 1. 

2.3. Feature selection 

We extracted the following five categories of clinical features for 
prediction: diagnosis codes, procedure codes, lab tests, medications, 
clinical events, and demographic information. The following paragraphs 
detail the features in each category and how they were processed. Our 
data preprocessing follows the methods used in our prior work [7,9]. 

Diagnosis codes specify patients' diseases and symptoms, which 
contain critical information for predicting future clinical events such as 
OD. There are two versions of ICD codes, ICD-9 and ICD-10, used in 
Health Facts to record diagnoses. We converted ICD-9 codes to ICD-10 
when they indicate the same clinical meaning to avoid dispersion of 
predictability [28]. Then, in order to reduce granularity, we extracted 
the first 3 digits of each code as features. 

Medications are recorded by National Drug Code (NDC) codes in 
Health Facts. The NDC code is a universal product identifier for human 
drugs specific to the individual label. Instead of manufacturer or pack-
ager level information, a clinically meaningful representation is more 
useful to predictive models, so we converted all NDC codes to 

Fig. 1. Flowchart of selecting patients.  
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Anatomical Therapeutic Chemical (ATC) codes. An ATC code is a unique 
code indicating the active ingredients according to the system/organ 
they target and how they work. Moreover, ATC level 3 codes were 
chosen [29] to represent all medications, because level 3 is the most 
detailed therapeutic/pharmacological class, whereas higher levels (i.e., 
4,5) are for chemical classes. For each medication, the total medication 
quantity prescribed to each patient was calculated as a feature for each 
medication. In addition, morphine milligram equivalents (MME) were 
specifically calculated as an aggregate feature. MME is a value assigned 
to opioids representing their relative potencies compared to morphine 
[30,31], which is an informative standardized indicator of a patient's 
overall opioid intake. We summed all MMEs for each encounter as the 
value for that feature. 

Lab Tests record a sample of a patient's blood, urine, other bodily 
fluid or body tissue, and analyze the sample to gain information about 
the patient's health. Common lab tests include complete blood count, 
prothrombin time, hemoglobin, etc. For each lab test, Health Facts not 
only provides a numeric value result, but also a standardized interpre-
tation of the value indicating whether it is high, low, or normal. We 
calculated the portion of high and low values that each patient received 
for each test, as well as the total number of tests that the patients 
received. 

Clinical events are other related personal health situations that are not 
formally classified into medical codes, like height, weight, and BMI. 
Some clinical events are highly relevant to opioid use, such as pain score 
indicating the pain level, and substance use history, which includes to-
bacco and alcohol. 

Demographic information was extracted as features, including age, 
gender, and race/ethnicity. 

To prevent overfitting, features of low co-occurrence with an opioid 
overdose diagnosis were removed, which we defined as <1 % preva-
lence in prior records of all opioid overdose patients. For this filtering 
threshold of 1 %, we performed an experiment to test the prediction 
performance with a threshold from 0.5 % to 5 % and also with a fixed 
number of features from 100 to 2000 in previous work [7–9]. Based on 
the LSTM model's performance, we had the best result with a threshold 
of 1 %. To keep the work consistent and comparable, we continue with 
this threshold of 1 %. After the removal process, 1185 features 
remained, which included 414 diagnosis codes features, 394 laboratory 
test features, 3 demographic features, 227 clinical event features, and 
147 medication features (summarized in Table 1). 

2.4. Encounter selection for input construction 

For input feature matrix construction, we first identified the 
encounter where the prediction target, or diagnosis of opioid poisoning, 
first occurred. For positive cases, the prediction encounter was the first 

encounter with a diagnosis of opioid poisoning. For negative cases, the 
last encounter was used as the target encounter. We then selected the 
last 5 encounters that occurred at least 14 days and at most 12 months 
before the target encounter to build the feature vectors (Fig. 2). If a 
patient had fewer than 5 encounters for the prediction, we repeated the 
last available encounter to fill the gap. For instance, if a patient had only 
3 encounters prior to the prediction encounter, then the feature matrix 
for the patient would be composed of one feature vector for the first 
encounter, one feature vector for the second encounter, and three 
feature vectors replicated from the third encounter [7–9]. We evaluated 
different numbers of encounters, and 5 was the optimal number with the 
best performance. The 12 months' constraint is a common standard in 
previous opioid overdose studies, which is also employed in insurance 
claims and Veterans Health Administration areas [32–35]. The 14 days' 
constraint is employed to exclude encounters with a close time frame to 
the date of the target. 

3. Methodology 

3.1. Input feature matrix construction 

Our data input is composed of two parts; we denote them as 1) raw 
feature matrix and 2) graph embeddings. The raw feature matrix is built 
by following the procedure in the previous section to record the exis-
tence or value of mentioned clinical features. Graph embeddings are 
obtained by the GNN model described next to represent the interactions 
of features and patients. Although we split them into two parts, in ac-
tuality, the GNN model learns graph embeddings from the graph built 
through extracting feature relations from the raw feature input. The 
design of how we build each input feature matrix and feed them to the 
models is shown in Fig. 3. 

3.2. Heterogeneous relational graph model construction 

Heterogeneous GNNs are a variant of GNN models that contain 
different types of nodes and edges and are capable of capturing the 
characteristics of different node and edge types [14,15]. We incorpo-
rated 3 different types of nodes: patient, encounter and feature, as 
shown in Fig. 4. 

Each patient node represents a patient and each encounter node 
represents one encounter for one patient. For each pair of node types, we 
defined an edge type, such as a patient-encounter edge between patient 
and encounter nodes, or an encounter-feature edge between encounter 
and feature nodes. 

To initiate the feature node vectors, we used a one-hot encoding 
vector. The i-th entry with the value of 1 indicates a specific lab test was 
performed or a specific diagnosis was given (as shown in Fig. 5), and the 
value of 0 indicates it was not present. For example, to represent the 414 
different diagnosis features, the vector for the diagnosis node had a 
length of 414 with value 1 or 0 indicating the presence or absence of a 
diagnosis respectively. Initial input vectors to nodes were then projected 
into a shared latent space with a trainable weight matrix W according to 
different feature types. Inspired by relational GCN models, we defined 
the following propagation model for calculating the forward-pass up-
date of nodes: 
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i = σ
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l+1 is the hidden state of the node i in layer l + 1, while hi

l is for layer 
l. Ni

r denotes the set of neighbor indices of node i under relation r. For 
each edge type, there is a weight vector Wr

r indicating the linear trans-
formation of that edge type. To ensure that the representation of a node 
at layer l + 1 can also be informed by the corresponding representation 
at layer l, we added weight W0

l to the representation of layer l. ci, r is a 
problem-specific normalization constant that can either be learned or 

Table 1 
Summary of features.  

Datasets Category # of 
Features 

Description 

Health 
Facts 

Diagnosis  414 First 3 digits of ICD-10 (ICD-9 codes 
were converted to ICD-10) 

Laboratory Test 
Result  394 

Number of high, low and normal 
values for each test 

Demographics  3 Gender, Age, Race/Ethnicity 

Clinical Events  227 

Other related personal health 
situations that are not formally 
classified into medical codes, e.g., 
height, weight, BMI, smoking 
history and other substance use 
history. Continuous variables like 
height, weight, BMI are recorded by 
their numeric value. 

Medication  147 
Total quantity prescribed for each 
medication  
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chosen in advance, for which we use ci, r = ∣ Ni
r∣. During the training 

phase, we obtained the weights for different types of edges. During the 
test phase, we reconstructed the graph based on the test set with 
different edge connections and the same edge weights. 

3.3. Integration with LSTM model 

We integrated the embeddings learned from the Heterogeneous 
graph with the LSTM model to form our proposed HeteroRGCN+LSTM 

Fig. 2. Encounters for prediction and building feature matrix.  

Fig. 3. Structure of input feature matrix and model.  

Fig. 4. Structure of heterogeneous relational graph.  

X. Dong et al.                                                                                                                                                                                                                                    



Artificial Intelligence In Medicine 135 (2023) 102439

5

model, which we entitled “LIGHTED”. Long Short-Term Memory (LSTM) 
networks are a version of RNNs. LSTM has two main advantages over 
common RNNs; LSTM has better memory of knowledge learned from 
past inputs, and LSTM can solve the vanishing gradient problem faced by 
RNNs [36]. The embedding of patient encounter nodes was concate-
nated with original feature inputs, together forming the input features 
for the LSTM model. The structure of the proposed LIGHTED model is 
shown in Fig. 6. The parameters of the LSTM and graph were trained 
simultaneously. We implemented the integrated network with two 
layers of HeteroRGCN with 100-dimensional embeddings and two layers 
of LSTM with 64 hidden units. The whole model was trained with binary 
cross-entropy loss function and Adam optimizer. These parameters were 
chosen for their performance in preliminary experiments. 

3.4. Interpretability 

Unlike inferential models, deep learning based predictive modeling 
can result in a “black box” with predictions difficult to interpret [37]. A 

common approach is to rank features based on the importance of the 
predictions, through methods such as permutation importance [19] and 
Shapley values [44]. However, feature importance ranking may not be 
informative enough for clinical use. First, some top features may not be 
available in the EHR for a specific patient due to the sparse nature of 
EHR data. Second, values of some features may have multiple clinical 
meanings; for example, a higher weight may result from a variety of 
different health conditions. Lastly, the large number of features may be 
intimidating or infeasible for clinicians to interpret, considering that 
more than a thousand EHR features are used in the predictions. 

To address these challenges, we first provide a global importance 
ranking for all features, based on permutation importance, Shapley 
value, and model-agnostic methods. Then, we apply a clustering algo-
rithm to group features based on graph embeddings extracted from the 
LIGHTED model. Graph embedding is an approach to transform features 
and their graphic information into a vector space, and use those trans-
formed vectors as representations of the features. It is commonly ach-
ieved by the inner output from a GNN model [55]. When building a 

Fig. 5. An example visual representation of features in a heterogeneous graph. The vector for each node is updated by aggregating node vectors of its neighborhood 
nodes and its own vector from the last layer. The feature node vector will be initiated by one-hot encoding. 

Fig. 6. Structure of integrated LSTM-GNN model.  
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graphic relation on the input features, every input feature is constructed 
as a numeric vector for a node or edge. Then a GNN model can be 
applied to those input features correlated by the graph structure to 
perform a prediction task. The node and edge vectors which represent 
the input feature are updated during the training phase. Finally, after 
training, the updated vectors are used as a graph embedding. Nodes or 
edges of similar structures in the graph will have similar embeddings 
[56], which means similar effects in terms of the prediction task. Thus 
the graph embeddings are naturally suited for grouping by a clustering 
algorithm. Fig. 7 shows the workflow we used to apply clustering al-
gorithms on graph embeddings. 

In our LIGHTED model, EHR features are processed as node vectors, 
and the machine learning task is opioid overdose prediction. After 
training, the heterogeneous relational graph node features are updated 
accordingly, and there is a vector of fixed length for each feature node 
that can be used as a graph embedding for the feature. The clustering of 
features' graph embeddings provides simplification of the feature set and 
reduces redundancy. Feature clustering may be more usable for clinical 
interpretations, since the grouped features in a feature's cluster may help 
to infer its meaning. Our resulting feature clusters were qualitatively 
evaluated by 2 board-certified clinicians to 1) assess clinically mean-
ingful patterns and to potentially map the clusters to clinical topics, and 
2) reassess the contents of the derived clusters for face-validity. 

4. Experiment 

4.1. Experiment setting 

After selection, a dataset was built consisting of 5,231,614 patients 
with at least one opioid prescription. Among them, 44,774 patients had 
an opioid poisoning diagnosis (“positive”) and 5,186,840 patients did 
not have any recorded opioid poisoning event (“negative”). The total 
cohort of negative patients was portioned into 10 equal parts of 518,684 
negative patients each. Each negative patient portion was combined 
with all the positive patients together for an evaluation, with random 
selection of 80 % as a training set and the remaining 20 % as the test set. 
We repeated the evaluation for all 10 portions, and an average value of 
each performance metric was reported for evaluation. 

We calculated common machine learning performance metrics, 
including precision, recall, F1 score, and Area Under the Receiver 
Operating Characteristic curve (AUROC). Recall is a critical factor for 
prediction models as it identifies how many potential OD patients we 
can predict in advance. High recall can be achieved by tuning parame-
ters to have a lower precision, since there is a tradeoff between recall 

and precision. Therefore, the F1 score, as a measurement considering 
both precision and recall, is regarded as the best aggregated assessment 
of the overall prediction performance. Along with the metrics, we also 
applied t-tests to compare the results between our proposed model and 
comparison methods to demonstrate that the novel model is statistically 
significantly better than existing models. We repeated the experiment 30 
times, then applied a t-test to the sequence of F-1 scores and AUROC 
scores separately to compute the p-value. 

Our implementation environment was the Python programming 
language (2.7). Traditional machine learning methods were imple-
mented with the Python Scikit-Learn package [38]. Deep learning was 
implemented with Python TensorFlow [39], Python Keras [40] and 
PyTorch Geometric [41]. Other libraries used included Python NumPy 
[42], Python Pandas [43], and Python SHAP [44]. The training was 
performed on an NVIDIA Tesla V100 (16GB RAM). 

4.2. Prediction result 

We compared our models with other machine learning methods to 
evaluate the effectiveness of the proposed model. The comparison 
methods can be classified into four categories: 1) traditional methods 
(random forest, decision tree, logistic regression and dense neural 
network) are applied on raw input matrix without graph embeddings; 2) 
sequential methods (LSTM, bidirectional LSTM [45], attention model 
[46] and transformer [47] are applied on raw input without graph 
embeddings; and 3) graph models (GCN [12], GAT [13] and Heter-
oRGCN [16]) are applied on the graph embedding without raw input 
matrix; and 4) sequential graph combined models (LSTM-GNN, LSTM- 
GCN and LSTM-GAT) are applied on both graph embedding and raw 
input feature matrix in the same way as LIGHTED (LSTM-HeteroRGNN) 
but with a homogeneous graph. Table 2 shows the results for all 
compared methods. 

The LIGHTED model achieved an F1 score of 0.8006. For precision, 
the best performance the LIGHTED model achieved was 0.8182, which 
indicates the accuracy of a positive OD prediction for a patient. The 
LIGHTED model also achieved the best recall, 0.7865, which measures 
the ability to find all the OD patients in the dataset. In terms of F1 score, 
the LIGHTED model had better performance than comparison methods. 
For the transformer model, the difference was not statistically significant 
(p-value≥0.05). As for AUROC, the LIGHTED model performed signifi-
cantly better than the transformer model, in addition to outperforming 
all other models. 

Fig. 8(A) shows the ROC curves for 6 major methods: random forest, 
dense neural network, LSTM, Transformer, HeteroRGCN, and LIGHTED. 

Fig. 7. The workflow of applying clustering algorithms on graph embeddings.  
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Fig. 8(B) shows how sensitivity and specificity change over different 
score thresholds for binary classification in LIGHTED. Fig. 8(C) shows 
the average time needed for one epoch when training each model. The 
LIGHTED model requires longer than common sequential and graph 
models, but shorter training time than the transformer model. 

4.3. Risk scoring 

To support clinical decision, model should be able to give an estimate 
of the level of risk beyond a binary prediction. The clinical practices to 
evaluate risk level of OD in the US are largely based on guidance from 
the CDC, where risk assessment is primarily driven by findings from the 
literature. While some tools have recently been developed for prediction 
of OD risk, they are mostly based on MME. For example, in the 2019 
CMS opioid safety measures [57], patients of high OD risk are identified 
by high dose opioid use and concurrent use of benzodiazepines. Overall, 
those tools are limited to make assessments on MME and a few related 
medications. Given the paucity of tools for clinical practitioners in 
assessing risk of overdose, we suggest several methods for grouping 
patients into high/medium/low risk categories. 

Based on the patients' probability scores from LIGHTED, we used 
four different methods to risk-stratify and group patients [32]. First, we 
split the test dataset into two equal parts, used the first part to decide the 
probability threshold to split the different risk level groups, then applied 
the thresholds to the second part to report the negative and positive rates 
for each risk level group to validate the performance. For the high risk 
group, we ranked patients by probability scores and then identified 
those in the percentile <1 % as high risk patients. We defined medium 
risk as those patients with probability scores in the 1 % to <10 % 
percentile, with the remaining patients designated as low risk. As a 
second method for scoring patient risk, we set the probability threshold 
that maximizes the F1 score as the threshold for the medium risk group. 
Our third method for risk scoring was to take the probability threshold 
when the summation of the sensitivity and specificity was maximized for 
the medium risk group [48]. For the fourth method, we took the 

probability when specificity equals 0.9 as the threshold for the medium 
risk group. For all the medium risk patients, we excluded the patients in 
the high risk group, while for the low risk group, we excluded the pa-
tients in high and medium risk groups. As a comparison, we applied the 
traditional clinical practice CMS opioid safety measure to split the risk 
group level. Table 3 shows the portion of true positive and true negative 
patients in each group after applying each grouping method. 

In the high risk group, >96 % of patients are positive. For the me-
dium risk group, around 60 % of patients are positive across the different 
methods. Compared to the clinical practice, CMS opioid safety measure, 
we have a low chance of misclassifying positive patients as negative. In 
the low risk group, only around 5 % of patients are positive. The ability 
to accurately identify risk groups can help clinicians and policymakers 
to better target interventions toward patients at high risk of OD. 

4.4. Interpretation 

To provide better interpretability of the LIGHTED model, we first 
provided and compared three importance feature ranking methods. We 
then proposed a novel interpretability approach by grouping features 
and patients with the graph neural network representations. 

4.4.1. Feature importance ranking 
We applied population level feature ranking methods to our pro-

posed LIGHTED method, with the top 50 ranked features for each 
method listed in Table 4. We used permutation feature importance, a 
model-agnostic decision tree, and Shapley values to rank features. For 
the permutation method, we defined feature importance as the 
decreased value in AUROC metric when the value of that feature was 
blinded to the model [19]. Model-agnostic methods include the use of 
interpretable surrogate models such as a decision tree to simulate black- 
box deep learning models; the intrinsically interpretable model is 
trained using the black box model predictions instead of the outcomes 
from the original data set. The surrogate model output is then used to 
rank the features [17]. Shapley values involve a game theory-based 

Table 2 
Summary of prediction performance results.  

Model Precision Recall F-1 AUROC p-value 
(F-1) 

p-value 
(AUROC) 

Traditional Methods (on raw feature input matrix) 
Random Forest 0.7695 ± 0.0056 0.7055 ± 0.0038 0.7361 ± 0.0057 0.8291 ± 0.0037 <0.01 <0.01 
Decision Tree 0.7277 ± 0.0053 0.7047 ± 0.0029 0.7160 ± 0.0029 0.7892 ± 0.0048 <0.01 <0.01 
Logistic Regression 0.7539 ± 0.0029 0.6050 ± 0.0026 0.6647 ± 0.0025 0.7147 ± 0.0035 <0.01 <0.01 
DNN 0.8006 ± 0.0052 0.7329 ± 0.0046 0.7683 ± 0.0027 0.8414 ± 0.0028 <0.01 <0.01  

Sequential Models (on raw feature input matrix) 
LSTM 0.7884 ± 0.0054 0.7616 ± 0.0027 0.7798 ± 0.0060 0.8618 ± 0.0051 <0.01 <0.01 
Bi-LSTM 0.7879 ± 0.0013 0.7615 ± 0.0012 0.7796 ± 0.0012 0.8593 ± 0.0065 <0.01 <0.01 
Attention 0.8128 ± 0.0019 0.7512 ± 0.0012 0.7815 ± 0.0022 0.8749 ± 0.0024 <0.01 <0.01 
Transformer 0.8124 ± 0.0086 0.7654 ± 0.0109 0.7911 ± 0.0019 0.8766 ± 0.0060 0.117 <0.01  

Graph Models (on graph embeddings) 
GCN 0.7867 ± 0.0089 0.7533 ± 0.0056 0.7696 ± 0.0020 0.8395 ± 0.0082 0.046 <0.01 
GAT 0.7831 ± 0.0016 0.7433 ± 0.0086 0.7580 ± 0.0036 0.8292 ± 0.0095 <0.01 <0.01 
HeteroRGCN 0.8003 ± 0.0060 0.7679 ± 0.0021 0.7750 ± 0.0017 0.8429 ± 0.0046 <0.01 <0.01  

Sequential Graph Combined Models (on both raw input and graph embeddings) 
LSTM-GNN 0.7884 ± 0.0094 0.7728 ± 0.0096 0.7851 ± 0.0079 0.8589 ± 0.0133 <0.01 <0.01 
LSTM-GCN 0.7991 ± 0.0093 0.7767 ± 0.0088 0.7877 ± 0.0052 0.8608 ± 0.0085 <0.01 <0.01 
LSTM-GAT 0.7971 ± 0.0076 0.7692 ± 0.0112 0.7828 ± 0.0047 0.8667 ± 0.0076 <0.01 <0.01  

Proposed Model 
LIGHTED 

(LSTM-HeteroRGNN) 0.8182 ± 0.0072 0.7856 ± 0.0103 0.8006 ± 0.073 0.8969 ± 0.0115 *  

The best performance of each metric in every category is marked in bold. 
* p-values are generated by comparing each method with LIGHTED, so there are no p-values in the row of LIGHTED itself. 
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Fig. 8. (A) ROC curves for different models. (B) Specificity and sensitivity curves of LIGHTED over different probability thresholds. (C) Average time for epoch in 
training phase for each model. 

Table 3 
True positive and negative ratios by different high/medium/low grouping rules.  

Risk Group High Risk Medium Risk 
(exclude high risk) 

Low Risk 
(exclude high and medium risk)  

Positive 
(%) 

Negative 
(%) 

Positive 
(%) 

Negative 
(%) 

Positive 
(%) 

Negative 
(%) 

Grouping Method <1 percentile 
(1216) 

>1 and < 10 percentile 
(4956) 

other 
(50,174)  

96.65 3.35 60.69 39.31 6.96 93.04  
<1 percentile 
(1216) 

Maximum F1 score 
(4708) 

other 
(50,422)  

96.65 3.35 62.11 37.89 7.09 92.91  
<1 percentile 
(1216) 

Maximum 
Sensitivity + Specificity 
(6528) 

other 
(48,602)  

96.65 3.35 52.48 47.52 6.37 93.63  
<1 percentile 
(1216) 

Specificity = 0.9 
(5268) 

other 
(49,862)  

96.65 3.35 58.81 41.19 6.83 93.16 

CMS Opioid Safety Measurea High Risk Group 
(10,049) 

Low Risk Group 
(46,297)  

Positive: 34.30 %, Negative: 65.7 % Positive: 2.22 %, Negative: 97.78 %  

a The 2019 CMS opioid safety measures are meant to identify high-risk individuals or utilization behavior [57]. These measures include 3 metrics: (1) high-dose use, 
defined as higher than 120 morphine milligram equivalent (MME) for 90 or more continuous days, (2) 4 or more opioid prescribers and 4 or more pharmacies, and (3) 
concurrent opioid and benzodiazepine use for 30 or more days. 
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approach to explain the output of any machine learning model [44]. A 
Shapley value measures the contribution of a given feature value to the 
difference between the actual prediction and the mean prediction. After 
calculating the Shapley value for every observed value of a given 
feature, the results are aggregated by taking the mean (irrespective of 
direction); this aggregate mean is compared across features to form an 
importance ranking. 

After ranking the features according to each of the three methods 
(model-agnostic decision tree, Shapley value, and permutation impor-
tance), a practicing clinician investigator used knowledge of clinically- 
recognizable concepts and a priori features with a known OD and/or 
opioid use disorder association to qualitatively evaluate the top 50 
features from each interpretability method for their potential clinical 
relationships to opioid overdose. The characterization of features related 
to OD are shown in Table 4. Of the 3 methods, the top 50 features 
identified using Shapley values (shown in Fig. 9) included the most 
clinically meaningful features (20), with 11 features related to pain/ 
opioid/non-medical drug use (marked with (1) in Table 4, yellow bars 
in Fig. 8), 2 features corresponding to mental disorders (marked with (2) 
in Table 4, blue bars in Fig. 8) [49], and 7 corresponding to features 
affecting the respiratory system (marked with (3) in Table 4, green bars 
in Fig. 8) [50]. 

Table 4 
Top 50 features for each interpretation method on LIGHTED model. Features 
with clinical relevance are labeled with a number, (1) features related to pain/ 
opioids/drug misuse, (2) features related to a mental health disorder (3) features 
related to the respiratory system.  

Rank Shapley Value Model-Agnostic 
Method (Decision 
Tree) 

Permutation 
Importance  

1 N02A: Opioids (1) N02A: Opioids (1) N02A: Opioids (1)  
2 Other and unspecified 

disorders of back (1) 
Blood Pressure 
Diastolic 

Pain Scale Score 
(1)  

3 Nondependent abuse of 
drugs (1) 

MME (1) Antipropulsives  

4 MME (1) Anesthetics, general Anesthetics, 
general  

5 Weight Antipropulsives Alcohol Use (1)  
6 Carbon dioxide (3) Respiratory Rate (3) Other analgesics 

and antipyretics 
(1)  

7 Essential hypertension Other analgesics and 
antipyretics (1) 

Blood Pressure 
Diastolic  

8 BSA, Body Surface Area Height Blood Pressure 
Systolic (1)  

9 Aspartate 
Aminotransferase / SGOT 

Heart Rate Hypnotics and 
sedatives (2)  

10 General symptoms BMI, Body Mass Index Mean Corpuscular 
Hemoglobin  

11 Respiratory Rate (3) Weight Red Blood Cell 
Distribution Width 
(RDW)  

12 Diabetes mellitus Pulse MME (1)  
13 Other analgesics and 

antipyretics (1) 
Mean Arterial Pressure Smoke, Exposure 

to Tobacco Smoke 
(1)  

14 Other disorders of soft 
tissues 

Temperature Oral Uterotonics  

15 Creatinine, Serum 
Quantitative 

O2 Saturation (SO2) 
(3) 

Blood Urea 
Nitrogen  

16 Blood Urea Nitrogen Uterotonics Alkaline 
Phosphatase, 
Serum  

17 Glucose, Serum/Plasma 
Quantitative 

Red Blood Cell 
Distribution Width 
(RDW) 

Heart Rate  

18 Occupant of pick-up 
truck or van injured in 
noncollision transport 
accident (1) 

Pulse Peripheral Chloride, Serum  

19 Red Blood Cell 
Distribution Width 
(RDW) 

SPO2 (Saturation of 
peripheral oxygen) (3) 

Height  

20 Antiemetics and 
antinauseants 

Heart Rate Monitored Weight  

21 Other symptoms 
involving abdomen and 
pelvis 

Blood Urea Nitrogen BMI, Body Mass 
Index  

22 Anxiety, dissociative and 
somatoform disorders (2) 

Temperature (Route 
Not Specified) 

Monocyte Count  

23 Hemoglobin Weight, Pounds Throat 
preparations  

24 Other and unspecified 
disorders of joint (1) 

Cough suppressants, 
excluding 
combinations with 
expectorants 

Tobacco Use 
(Number of Years) 
(1)  

25 Pain, not elsewhere 
classified (1) 

White Blood Cell Count Albumin, Serum  

26 Symptoms involving 
respiratory system and 
other chest symptoms (3) 

Pulse Oximetry (3) Lymphocyte 
Absolute Count  

27 Pain Scale Score (1) Glasgow Coma Score 
(3) 

Basophils Percent  

28 Weight, Ideal Weight, Clinical Other and 
unspecified 
disorders of back 
(1)  

29 Hematocrit Hypnotics and 
sedatives (1) 

Hemoglobin  

Table 4 (continued ) 

Rank Shapley Value Model-Agnostic 
Method (Decision 
Tree) 

Permutation 
Importance  

30 White Blood Cell Count Carbon dioxide (3) Nondependent 
abuse of drugs (1)  

31 Mean Platelet Volume Mean Corpuscular 
Hemoglobin 

Red Blood Cell 
Count  

32 SPO2 (Saturation of 
peripheral oxygen) (3) 

Weight, Daily 
Kilograms 

Glomerular 
Filtration Rate 
Estimated  

33 Anion Gap Lymphocyte Percent Posterior pituitary 
lobe hormones  

34 Mean Corpuscular 
Hemoglobin 

Posterior pituitary lobe 
hormones 

BSA, Body Surface 
Area  

35 Chloride, Serum Weight, Ideal Potassium, Serum  
36 Glasgow Coma Score (3) Glomerular Filtration 

Rate Estimated 
Hematocrit  

37 Platelet Count Temperature Temporal 
Artery 

Pain, not 
elsewhere 
classified (1)  

38 O2 Saturation (SO2) (3) Creatinine, Serum 
Quantitative 

Calcium, Serum  

39 Calcium, Serum Mean Corpuscular 
Hemoglobin 
Concentration 

Creatinine, Serum 
Quantitative  

40 Episodic mood disorders 
(2) 

Height, Inches Anxiolytics (2)  

41 Other postprocedural 
states 

Chloride, Serum Blood Gas CO2 
Total, Arterial (3)  

42 Drug dependence (1) Alkaline Phosphatase, 
Serum 

Lymphocyte 
Percent  

43 Potassium, Serum Glucose, Serum/ 
Plasma Quantitative 

Drug dependence 
(1)  

44 Prothrombin Time ETCO2 (End Tidal 
CO2) (3) 

UA White Blood 
Cell  

45 Symptoms involving 
digestive system 

Albumin, Serum Irrigating solutions  

46 Albumin, Serum Mean Platelet Volume Essential (Primary) 
Hypertension  

47 INR (International 
Normalized Ratio) 

BSA, Body Surface Area Neutrophil Percent  

48 Sodium, Serum (3) Occupant of pick-up 
truck or van injured in 
noncollision transport 
accident (1) 

Erythrocytes Blood 
Automated Count  

49 Chronic airway 
obstruction, not 
elsewhere classified (3) 

Neutrophil Count Ammonia  

50 Blood Pressure Diastolic Potassium, Serum Pulse  
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4.4.2. Feature clustering 
To potentially simplify the feature space and reduce concept 

redundancy, we ran an agglomerative hierarchical clustering algorithm 
on the graph embeddings of all features. Clusters were evaluated by a 
clinical investigator to assess for clinically meaningful patterns where at 
least 25% of the features had a definable clinical relationship to each 
other and thus gave the cluster potential explainability. Table 5 shows 
partial results of feature clustering. Some clusters (A, B) were highly 
interpretable in the context of feature cluster relationship to OD, such as 
clusters with multiple diagnoses related to accidental injury or sub-
stance/medication use or toxicity [51,52]. Other clusters (C), which we 
defined as intermediate in explainability, contained interpretable fea-
tures related to clinical reno-pulmonary systems. They may be related to 
OD through mechanisms such as respiratory depression or impaired 
renal function [53,54]. Some clusters (D) did not have any clearly 
identifiable patterns with clinical meaning. 

5. Discussion 

With the wide availability of electronic health records, predictive 
modeling can provide a powerful approach to estimate risks of opioid 
overdose for patients and support early interventions for prevention and 
risk mitigation. However, the complex dynamics and interactions of 
EHR data make it difficult for traditional machine learning and 
statistics-based predictive models to process. Advanced deep learning 
models can address these challenges of complex EHR data. Specifically, 
the sequential LSTM can model the dynamics of EHR data, and graph 

neural networks can model the interactions between EHR data. There-
fore, we developed a new integrated model, LIGHTED, combining both 
LSTM and GNN frameworks to better address the opioid overdose risk 
prediction problem. 

Our proposed LIGHTED integrated model achieved a promising 
result, with a higher F1 score than traditional learning models, 
sequential models, or graph models alone. To improve model inter-
pretability, we identified top features related to opioid overdose, which 
could be used as explanatory mechanisms to support clinicians in the 
risk assessment process, and potentially, in a toolkit for clinical decision 
support. We also explored feature embeddings provided by the graph 
clustering algorithm to group features into feature subsets with clinical 
meaning, as a potential simplified representation of high dimensional 
EHR features. 

5.1. Benefits of the model 

Compared with other traditional and deep learning models, our 
proposed model has several advantages. First, we can model the 
dependence relationship between observations at different time steps. 
Second, the interactions between features and patients can be learned 
from the heterogeneous graph based model. Third, graph embeddings 
can be used to cluster features and glean higher-level interpretations of 
the features when clinically meaningful patterns emerge. 

Fig. 9. Top 50 important features identified by Shapley value. Features in yellow are related to pain/opioid/drug misuse, features in blue are related to mental 
disorders and features in green are related to respiratory system. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

X. Dong et al.                                                                                                                                                                                                                                    



Artificial Intelligence In Medicine 135 (2023) 102439

11

5.2. Clinical significance 

It is critical for OD prevention to identify high risk patients and learn 
what features are related to the development of OD. Our model provides 
the prediction for each patient and meaningful grouping of patients by 
the risk level. Moreover, it identifies EHR features most relevant to OD 
risk. To evaluate which features were most important for prediction 
across different models, we identified 13 features that were included in 
the top 50 features in all three models. Some of these features were 
directly related to pain or opioid related treatment, such as MME and 
medication category N02A: Opioids and Other analgesics and antipy-
retics. Three additional features may have an indirect influence on risk 
of OD: high Creatinine, Serum Quantitative; low Albumin; and low 
Weight. These features clinically correspond to patients with either 
impaired renal function, poor nutritional status or poor synthetic liver 
function, which could increase the risk of OD because of impaired ability 
to metabolize opioids. Other features did not have a recognizable 
mechanistic correlation with risk of OD. For the clustering on graph 
embeddings of features, we can see that some groups show high inter-
pretability for opioid overdose patient identification. With those groups 
of features with clear clinical meaning, simplified explanatory labels can 
be given to represent the corresponding clinical concept, increasing the 
explainability for clinicians and patients. 

5.3. Limitations and future work 

Study limitations include that the study population was extracted 
from patients that received opioid prescriptions, so the results may not 
generalize well to patients who used non-prescribed opioids. Second, 
since the ground truth of the study was based on ICD codes in electronic 
health records, there are potentially patients who had OD at home or 
who were coded incorrectly that may have been missed. To address 
those problems, we plan apply natural language processing methods to 
incorporate unstructured notes data in our model, since structured EHR 
data may have missing information. Third, our model is based on data 
from the Health Facts database, which may not be applied to other EHRs 
directly. To address this issue, in future studies, we will exploit transfer 
learning methods to integrate knowledge learned from the Health Facts 
data with EHR data from our local health system. 

6. Conclusion 

Opioid overdose has become a leading cause of accidental death in 
the United States, which requires pharmacologic interventions and 
health efforts to address the epidemic. Predicting patients with high risk 
for OD can guide the early interventions in the developmental trajec-
tory. Our integrated LSTM-HeteroRGNN model LIGHTED showed 
promising results on prediction of high risk patients, and provided fea-
tures and feature clusters that are clinically meaningful to OD risk. 

Table 5 
Samples of clustering result on graph embeddings.a  

Cluster A. Accidental Injury (High*) Cluster B. Substance/Medication Use or Toxicity (High*) 

Other slipping, tripping and stumbling and falls 
Occupant of pick-up truck or van injured in collision with fixed or stationary object 
Occupant of pick-up truck or van injured in noncollision transport accident 
Occupant of pick-up truck or van injured in collision with heavy transport vehicle or bus 
Other complications of procedures not elsewhere classified 
Motor vehicle traffic accidents 
Accidents caused by submersion, suffocation, and foreign bodies 
Other disorders of bone and cartilage 
Contusion of trunk 
Glasgow Coma Score 
BSA, body surface area estimated 
Abdominal and pelvic pain 
Injury of unspecified body region 
Injury other and unspecified 
Drugs, medicinal and biological substances causing adverse effects in therapeutic use 
MME 
Other personal history presenting hazards to health 
Pain, not elsewhere classified 
Pain associated with micturition 
Episodic mood disorders 
Personality disorders 
Phencyclidine Urine 

Acetaminophen, serum quantitative 
Alcohol and/or drug, substance use 
Alcohol last use 
Tobacco frequency other 
Tobacco last use 
Smoking, attempt to quit in Past 
Smoking, willing to quit 
Smoking, readiness to quit 
Smoke, lives with someone who smokes 
Smoking packs/day 
Smoke, exposure to tobacco smoke 
Smoking history 
Tobacco type 
Opioid related disorders 
Pain scale score 
Muscle relaxants, peripherally acting agents 
Drugs for constipation 
Barbiturate, urine 
Poisoning by psychotropic agents 
Antipsychotics 
Personal history of mental disorder 
QT corrected (QTc)   

Cluster C. Reno-Pulmonary Features (Intermediate*) Cluster D. No Identifiable Pattern (Low) 

Essential (primary) hypertension 
Blood pressure diastolic sitting 
Blood pressure systolic sitting 
Glomerular filtration rate/1.73 sq. M predicted among blacks creatinine based formula (MDRD) 
UA bacteria 
Protein, urine 
Protein total, urine random 
Potassium, whole blood 
Calcium, serum 
Bicarbonate HCO3 
HCO3 
Other diseases of lung 
Other diseases of respiratory system 
Drugs for treatment of tuberculosis 
Symptoms involving respiratory system and other chest symptoms 
Pain in throat and chest 
PIP (Peak inspiratory pressure) 

Vitamin B1, plain and in combination with vitamin B6 and B12 
Red blood cell distribution width (RDW) 
Alcohol use 
Blood pressure central venous 
Neutrophil segmented percent 
Intestinal anti-inflammatory agents 
Special screening examination for bacterial and spirochetal diseases 
Antivaricose therapy 
Other systemic drugs for obstructive airway diseases 
Disorders of external ear 
Encounter for immunization 
LDL/HDL ratio 
Gastritis and duodenitis 
Unspecified viral hepatitis 
Carboxyhemoglobin 
Osteoarthrosis and allied disorders 
Symptoms involving urinary system  

a * High/Medium/Low is the strength of connection between the features and their cluster titles, according to two board-certified clinicians. 
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