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ABSTRACT

Accurate delineation of fine-scale structures is a very important yet challenging
problem. Existing methods use topological information as an additional training
loss, but are ultimately making pixel-wise predictions. In this paper, we propose the
first deep learning based method to learn topological/structural representations. We
use discrete Morse theory and persistent homology to construct an one-parameter
family of structures as the topological/structural representation space. Furthermore,
we learn a probabilistic model that can perform inference tasks in such a topolog-
ical/structural representation space. Our method generates true structures rather
than pixel-maps, leading to better topological integrity in automatic segmentation
tasks. It also facilitates semi-automatic interactive annotation/proofreading via the
sampling of structures and structure-aware uncertainty.

1 INTRODUCTION

Accurate segmentation of fine-scale structures, e.g., vessels, neurons and membranes is crucial for
downstream analysis. In recent years, topology-inspired losses have been proposed to improve
structural accuracy (Hu et al.| |2019; 2021} Shit et al., 2021} Mosinska et al., 2018;|Clough et al.}
2020). These losses identify topologically critical locations at which a segmentation network is
error-prone, and force the network to improve its prediction at these critical locations.

However, these loss-based methods are still not ideal. They are based on a standard segmentation
network, and thus only learn pixel-wise feature representations. This causes several issues. First, a
standard segmentation network makes pixel-wise predictions. Thus, at the inference stage, topological
errors, e.g. broken connections, can still happen, even though they may be mitigated by the topology-
inspired losses. Another issue is in uncertainty estimation, i.e., estimating how certain a segmentation
network is at different locations. Uncertainty maps can direct the focus of human annotators for
efficient proofreading. However, for fine-scale structures, existing pixel-wise uncertainty map is not
effective. As shown in Fig.[T[d), every pixel adjacent to a vessel branch is highly uncertain, in spite
of whether the branch is salient or not. What is more desirable is a structural uncertainty map that
can highlight uncertain branches (e.g., Fig. [I(f)).

To fundamentally address these issues, we propose to directly model and reason about the structures.
In this paper, we propose the first deep learning based method that directly learns the topologi-
cal/structural E]represenmtion of images. To move from pixel space to structure space, we apply the
classic discrete Morse theory (Milnor, |1963f |[Forman, [2002)) to decompose an image into a Morse
complex, consisting of structural elements like branches, patches, etc. These structural elements are
the hypothetical structures one can infer from the input image. Their combinations constitute a space
of structures arising from the input image. See Fig. [J(c) for an illustration.

For further reasoning with structures, we propose to learn a probabilistic model over the structure
space. The challenge is that the space consists of exponentially many branches and is thus of very high
dimension. To reduce the learning burden, we introduce the theory of persistent homology (Sousbie,
2011} \Delgado-Friedrichs et al.l 2015; (Wang et al., [2015) for structure pruning. Each branch has
its own persistence measuring its relative saliency. By continuously thresholding the complete
Morse complex in terms of persistence, we obtain a sequence of Morse complexes parameterized
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Figure 1: Illustration of structural segmentation and structure-level uncertainty. Compared with
Probabilistic-UNet (Kohl et al., 2018) (Fig. [T{c)-(d)), the proposed method is able to generate
structure-preserving segmentation map (Fig. [Ie)), and structure-level uncertainty (Fig. [T(f)).
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Figure 2: The probabilistic topological/structural representation. (a) is a sample input, (b) is the
predicted likelihood map from the deep neural network, (c) is the whole structure space obtained
by running a discrete Morse theory algorithm on the likelihood map, (d) the 1-d structural family
parametrized by the persistence threshold ¢, as well as a Gaussian distribution over ¢, (e) a sampled
skeleton, (f) the final structural segmentation map generated using the skeleton sample, and (g) the
uncertainty map generated by multiple segmentations.

by the persistence threshold, e. See Fig.[2[d). By learning a Gaussian over €, we learn a parametric
probabilistic model over these structures.

This parametric probabilistic model over structure space allows us to make direct structural predictions
via sampling (Fig. [J[)), and to estimate the empirical structure-level uncertainty via sampling
(Fig. (2)). The benefit is two-fold: First, direct prediction of structures will ensure the model
outputs always have structural integrity, even at the inference stage. This is illustrated in Fig. [Te).
Samples from the probabilistic model are all feasible structural hypotheses based on the input image,
with certain variations at uncertain locations. This is in contrast to state-of-the-art methods using
pixel-wise representations (Fig.[I[c)-(d)). Note the original output structure (Fig.[2e), also called
skeleton) is only 1-pixel wide and may not serve as a good segmentation output. In the inference
stage, we use a post-processing step to grow the structures without changing topology as the final
segmentation prediction (Fig. 2[f)). More details are provided in Sec.[3.2]and Fig.[5]

Second, the probabilistic structural model can be seamlessly incorporated into semi-automatic
interactive annotation/proofreading workflows to facilitate large scale annotation of these complex
structures. This is especially important in the biomedical domain where fine-scale structures are
notoriously difficult to annotate, due to the complex 2D/3D morphology and low contrast near
extremely thin structures. Our probabilistic model makes it possible to identify uncertain structures
for efficient interactive annotation/proofreading. Note that the structure space is crucial for uncertainty
reasoning. As shown in Fig.[I(f) and Fig. 2 g), our structural uncertainty map highlights uncertain
branches for efficient proofreading. On the contrary, traditional pixel-wise uncertainty map (Fig. [T[d))
is not helpful at all; it highlights all pixels on the boundary of a branch.

The main contributions of this paper are:
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1. We propose the first deep learning method which learns structural representations, based on
discrete Morse theory and persistent homology.

2. We learn a probabilistic model over the structure space, which facilitates different tasks such
as topology-aware segmentation, uncertainty estimation and interactive proofreading.

3. We validate our method on various datasets with rich and complex structures. It outperforms
state-of-the-art methods in both deterministic and probabilistic categories.

2 RELATED WORK

Structure/Topology-aware deep image segmentation. A number of recent works have tried to
segment with correct topology with additional topology-aware losses (Mosinska et al.,|2018;Hu et al.|
2019; [Clough et al., [2020; [Hu et al., [2021} |Shit et al.| 2021). Specifically, UNet-VGG (Mosinska
et al.,|2018)) detects linear structures with pretrained filters. clDice (Shit et al.,[2021)) introduces an
additional Dice loss for extracted skeleton structures. TopoLoss (Hu et al.,[2019; (Clough et al.| [2020)
learns to segment with correct topology explicitly with a differentiable loss by leveraging the concept
of persistent homology. Similarly, DMT-loss (Hu et al.,[2021) tries to identify the topological critical
structures via discrete Morse theory, and then force the network to make correct pixel-wise prediction
on these structures. All these losses, although aiming at topological integrity, still cannot change the
pixel-wise prediction nature of the backbone network. To the best of our knowledge, no existing
methods generate structural representations/predictions like our proposed method.

Additionally, the discrete Morse complex has been used for image analysis, but only as a preprocessing
step (Delgado-Friedrichs et al., 2015 Robins et al.,[2011; |Wang et al., 2015 Dey et al.,[2019) or as a
conditional input of a neural network (Banerjee et al., [2020).

Segmentation uncertainty. Uncertainty estimation has been the focus of research in recent
years (Graves} 2011;|Gal & Ghahramani} 2016j |Lakshminarayanan et al.,|2017; Moon et al., 2020).
However, most existing work focuses on the classification problem. In terms of image segmentation,
the research is still relatively limited. Some existing methods directly apply classification uncertainty
to individual pixels, e.g., dropout (Kendall et al., 2015} [Kendall & Gal, [2017). This, however, is not
taking into consideration the image structures. Several methods estimate the uncertainty by generating
an ensemble of segmentation (Lakshminarayanan et al.,[2017) or using multi-heads (Rupprecht et al.|
2017; Ilg et al.,|2018]). Notably, Probabilistic-UNet (Kohl et al., | 2018])) learns a distribution over the
latent space and then samples over the latent space to produce segmentation samples. When it comes
down to uncertainty, however, these methods can still only generate a pixel-wise uncertainty map,
using the frequency of appearance of each pixel in the sample segmentations. These methods are
fundamentally different from ours, which makes predictions on the structures.

3 METHOD

Our key innovation is to restructure the output of a neural network so that it is indeed making
predictions over a space of structures. This is achieved through insights into the topological structures
of an image and the usage of several important tools in topological data analysis.

To move from pixel space to structure space, we apply discrete Morse theory to decompose an image
into a Morse complex, consisting of structures like branches, patches, etc. For simplification, we
will use the term "branch" to denote a single piece of Morse structure. These Morse branches are
the hypothetical structures one can infer from the input image. This decomposition is based on a
likelihood function produced by a pixel-wise segmentation network trained in parallel. Thus it is of a
good quality, i.e., the structures are close enough to the true structures.

Any binary labeling of these Morse branches is a legitimate segmentation; we call it a structural
segmentation. But for full-scope reasoning of the structure space, instead of classifying these branches
one-by-one, we would like to have the full inference, i.e., predicting a probability distribution for
each branch. To further reduce the degrees of freedom to make the inference easier, we apply
persistent homology to filter these branches with regard to their saliency. This gives us a linear
size family of structural segmentations, parameterized by a threshold €. Finally, we learn an 1D
Gaussian distribution for the € as our probabilistic model. This gives us the opportunity not only
to sample segmentations, but also to provide a probability for each branch, which can be useful in
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downstream tasks including proofreading. In Sec.[3.1] we introduce the discrete Morse theory and
how to construct the space of Morse structures. We also explain how to use persistent homology to
reduce the search space of reasoning into an 1-parameter family. In Sec.[3.2] we will provide details
on how our deep neural network is constructed to learn the probabilistic model over the structure
space, as illustrated in Fig. [

3.1 CONSTRUCTING THE STRUCTURE SPACE

In this section, we explain how to construct a structural representation space using discrete Morse
theory. The resulting structural representation space will be used to build a probabilistic model.
We will then discuss how to reduce the structure space into a 1-parameter family of structural
segmentations, using persistent homology. We assume a 2D input image, although the method
naturally extend to 3D images.

Given a reasonably clean input (e.g., the likelihood map of a deep neural network, Fig. (b)), we
treat the 2D likelihood as a terrain function, and Morse theory (Milnor, [1963) can help to capture
the structures regardless of weak/blurred conditions. See Fig. [3|for an illustration. The weak part
of a line in the continuous map can be viewed as the local dip in the mountain ridge of the terrain.
In the language of Morse theory, the lowest point of this dip is a saddle point (S in Fig.[3[b)), and
the mountain ridges which are connected to the saddle point (M1 S and M S) are called the stable
manifolds of the saddle point.

We mainly focus on 2D images in this paper, although extending to 3D images is natural. We consider
two dimensional continuous function f : R? — R. For a point z € R?, the gradient can be computed
as Vf(zx) = [2L, 20T We call a point & = (1, 2) critical if V f(x:) = 0. For a Morse function

8:61 ? 6:62
defined on R2, a critical point could be a minimum, a saddle or a maximum.

Consider a continuous line (the red rectangle region in Fig.[3(a)) in a 2D likelihood map. Imagine
if we put a ball on one point of the line, then —V f(z) indicates the direction which the ball will
flow down. By definition, the ball will eventually flow to the critical points where V f(z) = 0. The
collection of points whose ball eventually flows to p (V f(p) = 0) is defined as the stable manifold
(denoted as S(p)) of point p. Intuitively, for a 2D function f, the stable manifold S(p) of a minimum
p is the entire valley of p (similar to the watershed algorithm); similarly, the stable manifold S(q) of
a saddle point ¢ consists of the whole ridge line which connects two local maxima and goes through

the saddle point. See Fig.[3[b) as an illustration.
MZ A '-‘
1

(a) Likelihood map (b) Terréin view (c) Morse complex

For a link-like structure, the stable
manifold of a saddle contains the topo-
logical structures (usually curvilinear) w
of the continuous likelihood map pre- |
dicted by deep neural networks, and
they are exactly what we want to re-
cover from noisy images. In practice,
we adopt the discrete version of Morse
theory for images.

Discrete Morse theory. Take a 2D
image as a 2-dimensional cubical Figure 3: (a) shows a sample likelihood map from the deep

complex. A 2-dimensional cubical neural network, and (b) is the terrain view of the red patch in
complex then contains 0-, 1-, and 2- (a) and illustrates the stable manifold of a saddle point in 2D
dimensional cells, which correspond ~ case for a line-like structure. (c) is the 2D Morse complex
to vertices (pixels), edges and squares, generated by DMT from (a).

respectively. In the setting of discrete

Morse theory (DMT) (Forman) 1998

2002), a pair of adjacent cells, termed as discrete gradient vectors, compose the gradient vector.
Critical points (V f(z) = 0) are those critical cells which are not in any discrete gradient vectors. In
the 2D domain, a minimum, a saddle and a maximum correspond to a critical vertex, a critical edge
and a critical square respectively. An 1-stable manifold (the stable manifold of a saddle point) in
2D corresponds to a V-path, i.e., connecting two local maxima and a saddle. See Fig. Ekb). And the
Morse complex generated by the DMT algorithm is illustrated in Fig. [3(c).
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Constructing the full structure space. In this way, by using discrete Morse theory, for a likelihood
map from the deep neural network, we can extract all the stable manifolds of the saddles, whose
compositions constitute the full structure space. Formally, we call any combinations of these stable
manifolds a structure. Fig. @kc) illustrates 5 different structures. This structure space, however, is of
exponential size. Assume there are [V pieces of stable manifolds/branches for a given likelihood map.
Any combinations of these stable manifolds/branches will be a potential structure. We will have 2V
possible structures in total. This can be computationally prohibitive to construct and to model. We
need a principled way to reduce the structural search space.

Reducing the structural search space with persistent homology. We propose to use persistent
homology (Sousbie, |201 1} Delgado-Friedrichs et al., 2015} Wang et al., 2015) to reduce the structural
search space. Persistent homology is an important tool for topological data analysis (Edelsbrunner &
Harer, |2010; |[Edelsbrunner et al.,2000). Intuitively, we grow a Morse complex by gradually including
more and more discrete elements (called cells) from empty. A branch of the Morse complex is a special
type of cell. Other types include vertices, patches, etc. Cells will be continuously added to the complex.
New branches will be born and existing branches will die. The persistence algorithm (Edelsbrunner
et al.| 2000) pairs up all these critical cells as birth and death pairs. The difference of their function
values is essentially the life time of the specific topological structure/branch, which is called the
persistence. The importance of a branch is associated with its persistence. Intuitively, the longer the
persistence of a specific branch is, the more important the branch is.

Recall that our original construction of the structure space considers all possible combination of
branches, and thus can have exponentially many combinations. Instead, we propose to only select
branches with high persistence as important ones. By doing this, we will be able to prune the less
important/noisy branches very efficiently, and recover the branches with true signals. Specifically,
the structure pruning is done via Morse cancellation (more details are included in Appendix [A.3)
operation. The persistence thresholding provides us the opportunity to obtain a structure space of
linear size. We start with the complete Morse complex, and continuously increase the threshold e.
At each threshold, we obtain a structure by filtering with € and only keeping the branches whose
persistence is above e. This gives a sequence of structures parametrized by e. As shown in Fig.[2[d),
the family of structures represents different structural densities.

The one-parameter space allows us to easily learn a probabilistic model and carry out various
inference tasks such as segmentation, sampling, uncertainty estimation and interactive proofreading.
Specifically, we will learn a Gaussian distribution over the persistence threshold ¢, € ~ N (u, o).
Denote the persistence of a branch b as €;,. Any branch b belongs to the structure map M (we also
call the structure map M a structural segmentation) as long as its persistence is smaller or equal to
the maximal persistence threshold of M, i.e., b € M if and only if ¢, < €5y, where €, is used to
generate M (ep; > maxpe s €p). More details will be provided in Sec. [3;2}

Approximation of Morse structures for volume data. In the 2D setting, the stable manifold of
saddles is composed of curvilinear structures, and the captured Morse structures will essentially
contain the non-boundary edges, which fits well with vessel data. However, the output structures
should always be boundary edges for volume data, which can’t be dealt with the original discrete
Morse theory. Consequently, we approximate the Morse structures of 2D volume data with the
boundaries of the stable manifolds of local minima. As mentioned above, the stable manifold of a
local minimum p in the 2D setting corresponds to the whole valley, and the boundaries of these valleys
construct the approximation of the Morse structures for volume data. Similar to the original discrete
Morse theory, we also introduce a persistence threshold parameter € and use persistent homology to
prune the less important branches. The details of the proposed persistent-homology filtered topology
watershed algorithm are illustrated in Appendix [A.4]

3.2 NEURAL NETWORK ARCHITECTURE

In this section, we introduce our neural network that learns a probabilistic model over the structural
representation to obtain structural segmentations. See Fig. ] for an illustration of the overall pipeline.

Since the structural reasoning needs a sufficiently clean input to construct discrete Morse complexes,
our method first obtains such a likelihood map by training a segmentation branch which is supervised
by the standard segmentation loss, cross-entropy loss. Formally, L.y = Lpee (Y, S(X; Wseg)), iN
which S(X;wseq) is the output likelihood map, ws. is the segmentation branch’s weight.
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Figure 4: The overall workflow of the training stage. The red arrows indicate supervision.

The output likelihood map, S(X; wseg), is used as the input for the discrete Morse theory algorithm
(DMT), which generates a discrete Morse complex consisting of all possible Morse branches from
the likelihood map. Thresholding these branches using persistent homology with different €’s
will produce different structures. We refer to the DMT computation and the persistent homology
thresholding operation as fpar and fpy. So given a likelihood map S(X; wgey) and a threshold e,
we can generate a structure (which we call a skeleton): Sskeicton(€) = fra(foMT(S(X;wseg)); €).
Next, we discuss how to learn the probabilistic model. Recall we want to learn a Gaussian distribution
over the persistent homology threshold, ¢ ~ N (u, o). The parameters p and o are learned by a neural
network called the posterior network. The network uses the input image X and the corresponding
ground truth mask Y™ as input, and outputs the parameters 1(X, Y'; wpost) and o (X, Y Wpost)- Wpost
is the parameter of the network.

During training, at each iteration, we draw a sample € from the distribution (¢ ~ N(u, 0)). Using the
sample ¢, together with the likelihood map, we can generate the corresponding sampled structure,
Ssketeton(€). This skeleton will be compared with the ground truth for supervision. To compare a
sampled skeleton, Sskeieton (€), With ground truth Y, we use the skeleton to mask both Y and the
likelihood map S(X; wsey), and then compare the skeleton-masked ground truth and the likelihood
using cross-entropy 10ss: Lyce (Y © Ssketeton (€), S(X;Wseq) © Ssketeton (€))-

To learn the distribution, we use the expected loss:

Lskeleton = EewN(/L,a)Lbce (Y o Sskeletan (6)7 S(X, Wseg) o Sskeleton(f)) (l)

The loss can be backpropagated through the posterior network through reparameterization tech-
nique (Kingma & Welling| [2013)). More details are provided in Appendix [A.5] Note that this loss
will also provide supervision to the segmentation network through the likelihood map.

Learning a prior network from the posterior network. Although our posterior network can learn
the distribution well, it relies on the ground truth mask Y as input. This is not available at inference
stage. To address this issue, inspired by Probabilistic-UNet (Kohl et al., 2018), we use another
network to learn the distribution of € with only the image X as input. We call this network the prior
net. We denote by P the distribution using parameters predicted by the prior network, and denote by
@ the distribution predicted by the posterior network.

During the training, we want to use the prior net to mimic the posterior net; and then in the inference
stage, we can use the prior net to obtain a reliable distribution over e with only the image X.
Thus, we incorporate the Kullback-Leibler divergence of these two distributions, Dg 1. (Q||P) =
Ecq(log %) , which measures the differences of prior distribution P (N (fprior, Oprior)) and the
posterior distribution @ (N (tpost, Tpost))-

Training the neural network. The final loss is composed by the standard segmentation loss, the
skeleton 1088 Lskereton, and the KL divergence loss, with two hyperparameters « and S to balance
the three terms,

L(X, Y) = Lseg + aLgketeton + ﬂDKL(QHP) 2
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The network is trained to jointly optimize the segmentation branch and the probabilistic branch
(containing both prior and posterior nets) simultaneously. During the training stage, the KL divergence
loss (D 1) pushes the prior distribution towards the posterior distribution. The training scheme is
also illustrated in Fig. 4]

Inference stage: generating structure-preserving segmentation maps. In the inference stage,
given an input image, we are able to produce unlimited number of plausible structure-preserving
skeletons via sampling. We use a postprocessing step to grow the 1-pixel wide structures/skeletons
without changing its topology as the final structural segmentation. Specifically, the skeletons are
overlaid on the binarized initial segmentation map (Fig. [5[c)), and only the connected components
which exist in the skeletons are kept as the final segmentation maps (Fig. [5(e)). In this way, each
plausible skeleton (Fig.[5[d)) generates one final segmentation map (Fig. [5[e)) and it has exact the
same topology as the corresponding skeleton. The pipeline of the procedure is illustrated in Fig. [5]

Uncertainty of structures. Given a learned prior distribution, P, over the family of structural
segmentations, we can naturally calculate the probability of each Morse structure/branch. Recall
a branch b has its persistence €,. And the prior probability of a structural segmentation map M
is P(ear), in which ey is used to generate M. Also any branch b whose persistence is smaller
or equal to the maximal persistence threshold of M belongs to M, i.e., b € M if and only if
€p < €p7. Thus we have €); > maxyeps €. Therefore, the probability of a branch b being in a
segmentation map M such as ej; ~ P follows a Bernoulli distribution with the probability Pr(b)
being the cumulative distribution function (CDF) of P, CDFp(e,) = P(e < €,). This can be directly
calculated at inference, and the absolute difference of the CDF from 0.5 is the confidence (which
equals 1-uncertainty) of the Morse structure/branch b.

4 EXPERIMENTS

Our method directly makes prediction and inference on structures rather than on pixels. This can
significantly benefit downstream tasks. While probabilities of structures can certainly be used for
further analysis of the structural system, in this paper we focus on both automatic image segmentation
and semi-automatic annotation/proofreading tasks. On automatic image segmentation, we show that
direct prediction can ensure topological integrity even better than previous topology-aware losses.
This is not surprising as our prediction is on structures. On semi-automatic proofreading task, we
show our structure-level uncertainty can assist human annotators to obtain satisfying segmentation
annotations in a much more efficient manner than previous methods.

4.1 AUTOMATIC TOPOLOGY-AWARE IMAGE SEGMENTATION

Datasets. We use three datasets to validate the efficacy of the proposed method: ISBI13 (Arganda-
Carreras et al.l 2013) (volume), CREMI (volume), and DRIVE (Staal et al.,|[2004) (vessel). More
details are included in Appendix[A.6]

Evaluation metrics. We use four different evaluation metrics: Dice score, ARI, VOI, and
Betti number error. Dice is a popular pixel-wise segmentation metric, and the other three are
structure/topology-aware segmentation metrics. More details are included in Appendix [A.7]

Baselines. We compare the proposed method with two kinds of baselines: 1) Standard segmentation
baselines: DIVE (Fakhry et al.,2016), UNet (Ronneberger et al.,2015), UNet-VGG (Mosinska et al.}
2018)), TopoLoss (Hu et al.,|2019) and DMT (Hu et al.,|2021). 2) Probabilistic-based segmentation
methods: Dropout UNet (Kendall et al., 2015)) and Probabilistic-UNet (Kohl et al.,|2018). More
details about these baselines are included in Appendix [A.8]

Quantitative and qualitative results. Table|I| shows the quantitative results comparing to several
baselines. Note that for deterministic methods, the numbers are computed directly based on the
outputs; while for probabilistic methods, we generate five segmentation masks and report the averaged
numbers over the five segmentation masks for each image (for both the baselines and the proposed
method). We use t-test (95% confidence interval) to determine the statistical significance and highlight
the significant better results. From the table, we can observe that the proposed method achieves
significant better performances in terms of topology-aware metrics (ARI, VOI and Betti Error).
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Figure 5: The inference and interactive annotation/proofreading pipeline.

Table 1: Quantitative results for different models on three different biomedical datasets.

Method Dice 1 ARI T VoI | Betti Error |
ISBI13 (Volume)
DIVE 0.9658 £ 0.0020  0.6923 +0.0134 2.790 £0.025 3.875 £0.326
UNet 0.9649 + 0.0057 0.7031 4+ 0.0256  2.583 +£0.078 3.463 £+ 0.435
UNet-VGG 0.9623 £ 0.0047  0.7483 + 0.0367 1.534 £0.063 2.952 £ 0.379
TopoLoss 0.9689 + 0.0026  0.8064 + 0.0112  1.436 £0.008 1.253 £0.172
DMT 0.9712 + 0.0047 0.8289 4+ 0.0189 1.176 £0.052 1.102 £ 0.203
Dropout UNet  0.9591 4+ 0.0031  0.7127 £ 0.0181 2.483 £0.046  3.189 £ 0.371
Prob.-UNet 0.9618 + 0.0019  0.7091 4+ 0.0201  2.319 £0.041  3.019 £ 0.233
Ours 0.9637 £+ 0.0032  0.8417 + 0.0114 1.013 + 0.081 0.972 + 0.141
CREMI (Volume)
DIVE 0.9542 + 0.0037 0.6532 +0.0247 2.513 £0.047 4.378 £0.152
UNet 0.9523 £0.0049 0.6723 £ 0.0312 2346 £0.105 3.016 £ 0.253
UNet-VGG 0.9489 + 0.0053  0.7853 +0.0281 1.623 £0.083 1.973 £0.310
TopoLoss 0.9596 + 0.0029 0.8083 + 0.0104 1.462 £0.028 1.113 £0.224
DMT 0.9653 + 0.0019  0.8203 +0.0147 1.089 £ 0.061  0.982 £ 0.179
Dropout UNet  0.9518 4 0.0018  0.6814 £ 0.0202  2.195 + 0.087  3.190 &+ 0.198
Prob.-UNet 0.9531 £ 0.0022  0.6961 +0.0115 1.901 £0.107 2.931 £0.177
Ours 0.9681 + 0.0016  0.8475 4+ 0.0043  0.935 £ 0.069 0.919 £ 0.059
DRIVE (Vessel)
DIVE 0.7543 £ 0.0008  0.8407 +0.0257 1936 £0.127 3.276 £ 0.642
UNet 0.7491 £ 0.0027  0.8343 +0.0413 1.975 £ 0.046 3.643 £ 0.536
UNet-VGG 0.7218 £ 0.0013  0.8870 + 0.0386  1.167 £0.026  2.784 £ 0.293
TopoLoss 0.7621 £ 0.0036  0.9024 + 0.0113  1.083 £ 0.006  1.076 £ 0.265
DMT 0.7733 £0.0039  0.9077 + 0.0021  0.876 £ 0.038  0.873 £ 0.402
Dropout UNet  0.7410 4+ 0.0019  0.8331 £0.0152 2.013 £ 0.072  3.121 £ 0.334
Prob.-UNet 0.7429 + 0.0020  0.8401 +0.1881 1.873 £0.081  3.080 £ 0.206
Ours 0.7814 + 0.0026  0.9109 & 0.0019 0.804 £ 0.047 0.767 £ 0.098
Fig.[6]shows qualitative results. Comparing with DMT (Hu VOI VS B

et al., 2021)), our method is able to produce a set of true
structure-preserving segmentation maps, as illustrated in 050
Fig.[f[e-g). Note that compared with the existing topology-
aware segmentation methods, our method is more capable

of recovering the weak connections by using Morse skele- -
tons as hints. More qualitative results are included in Ap-
pendix[A2] o7

Ablation study of loss weights. We observe that the perfor- ore
mances of our method are quite robust to the loss weights
« and 3. As the learned distribution over the persistence
threshold might affect the final performances, we conduct
an ablation study in terms of the weight of KL divergence

Figure 7: Ablation study for £.
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Figure 6: Qualitative results of our method compared to DMT-loss (Hu et al., [2021)). From left to
right: (a) image, (b) ground truth, (c) continuous likelihood map and (d) threshol