
BMI 503 Computer Science for
Biomedical Informatics

Chao Chen
Stony Brook University

Aug, 2022

Overview
• Audience: students with limited/no background of

computation.
• Goal: To prepare students for basic programming

tasks and data analytics courses.
• Instructor: Chao Chen, chao.chen.1@stonybrook.edu
• Time: Mon 10:00am to 12:30pm, in-person
• Office Hour: Mon 1-2, Th/Fr?
• Key content: Basic python programming; Data structures
• Reference books:

• Python for Everybody: Exploring Data in Python 3
https://www.py4e.com/

• Python for Data Analysis: Data Wrangling with Pandas, NumPy, and
Ipython Book by Wes McKinney

• Data Structures and Algorithms in Python: Michael T. Goodrich et al.
2

mailto:chao.chen.1@stonybrook.edu

Content
-------- Python programming essence -----------
* variables, loops, functions, object-oriented programming.
* running the code in a development environment, debug the code.
* IO, reading/writing files, string operations.

--------- Data structures and basic programming projects -------------
* list, array, stack, queue, tree, heap
* sorting, dynamic programming
* basic complexity analysis

3

Evaluation
• Mid-term: 30 pts (in class, TBD).
• Final: 30 pts (TBD).
• Programming projects (2 - 3, workload varies): 40 pts.

4

Round Table: Self-Introduction
• Name
• Department/Program
• Why taking this course?
• Background in Programming?

• If you feel comfortable with programming, you can skip classes and just
let me know.

5

Lecture 1. Python Primer – part 1

Chao Chen
Stony Brook University

Aug 22, 2022

Python
Program – a piece of code performing certain functionality
3 ways to run a python program
• Interactive environment

• Python/iPython – directly typing the command
quit() to exit

• jupyter notebook – interactive environment with fancier
browser interface (figures, tables, etc)

• Good for prototyping, demo; Does not scale
• Executing one or multiple program files (*.py)

• Python/iPython: exec(open("filename.py").read())
• Jupyter notebook

%load filename.py
• Integrated Development Environments (IDE)

• Debugging
• Scalable: managing multiple files / functions
• Less intuitive

7

Grammar of python programs

8

Python

9

Installation: Anaconda

• Anaconda – a comprehensive python distribution and easy to maintain
https://www.anaconda.com/products/individual

https://www.anaconda.com/products/individual

Installation: Anaconda (cont’d)

• Installation guide:
https://docs.anaconda.com/anaconda/install/

https://docs.anaconda.com/anaconda/install/

Installation: Jupyter Notebook
• Jupyter notebook (installed via anaconda)

https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html

https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html

Installation: IDE
• PyCharm (and many others, whatever you like)

https://www.jetbrains.com/pycharm/

https://www.jetbrains.com/pycharm/

Python

14

• Disclaimer: take the lecture
with a grain of salt.
• Python is a very dynamic

language
• Open source, changes are

made all the time
• Proceed with caution
• Always try first
• Learn to read the reference

https://docs.python.org/3/

https://docs.python.org/3/

Lines & Commands
• Commands: single instructions to

execute

One line
• Usually one command, finish with

a line break
• If one command cannot fit one

line, use ‘ \ ’ to extend
• Unfinished ‘ { [(‘ also works but I

recommend not
• Semi-colon: separate commands in

a same line
• White space (indentation) + colon:

defines control sequences
• Comments: anything after

’ # ’ within the same line
• Reserved words (boldfaced)

15

Similar principles apply to most
programming languages: C++,
Java, Matlab, etc.

The building blocks of a program

16

Identifiers, Objects and the Assignment Statement
• Built-in classes (types): int, float, str, etc.
• Object: of a given class (type), with a specific value, stored in a

particular memory address
• Identifier / name: pointing toward an object / memory address
• Assignment statement

Initiate an object (also type/class), associate it with an identifier
• Note the type is not explicitly defined in the statement

-- Python is dynamically-typed (Java, C++, etc, are not)
-- Makes your life easier, but also more dangerous.

17

Memory

More about Identifiers
• Case-sensitive: temperature and Temperature

are different
• Combinations of letters, numbers, underscore

• Can not start with numbers
• Can not use reserved words

18

More about Identifiers

• What are the reasons for the following errors?

19

Another example
• Another example

20

What is the output?

Alias
• Multiple identifiers pointing toward a same object

• Reassignment:

- evaluate expression on right hand side
- create a new object, and associate “temperature” to it.
- old object unaffected (with the alias still associated)

21

More examples

Values and Types

Variables, assignments and Types
Python: Variable types are dynamically deduced, based on assignments

Different in java and C
More rigid, less error-prone

Built-in Classes
• Immutable: object value cannot be changed
• Identifier can be reassigned

25

Built-in Classes (Cont’d)
• bool:

• Values: True or False; bool() returns False; bool(val), with val from other types
• int (automatically choose internal representation based on magnitude):

• initiate by int values: myInt = 10
• Binary, octal and hexadecimal: 0b1011, 0o52, 0x7f (base of 2, 8 and 16)
• int() returns 0
• int(val) return truncated value for val being float: int(3.4), int(3.99), int(-3.9)
• int(‘137’) converts a string to int if possible
• int(‘7f’, 16) converts from a different base to decimal
• Decimal to other bases: bin(…), oct(…), hex(…)

• float (close to double in Java and C/C++):
• myFloat = 8.9 myFloat = 8. myFloat = .8 myFloat = 6.022e23 myFloat = float()
• myFloat = float(2) myFloat = float(‘3.14’)
• sys.float_info

• type(…) – check the type of a variable
26

Built-in Classes (Cont’d)
• Sequence classes (list, tuple, str): A collection of values with (important) ordering
• list (mutable)

• referential: stores an array of references to objects

• Zero-Indexed: primes[0], ..., primes[len(primes)-1]
• Can be a mixture of (arbitrary) types, init using values/references

v_str = ‘tmp str’; v_float = 3.14
myList = [3, v_str, v_float, ’tmp str again’]

• Init using an empty list: myList = []
• Issue: list of lists, aliases for entries, be careful! Not an issue for basic types.

• Disclaimer: when copying code from this slide, the “ ’ ” symbol can be problematic. 27

Built-in Classes (Cont’d)
• tuple:

• Immutable version of list, use ‘()’ instead of ‘[]’
• Once initialized, cannot change values
• For single element tuple, use myTuple = (17,) instead of myTuple = (17), why?

• str (also immutable):
• myStr = ’sample’ or “sample”
• myStr = ”Don’t worry” or ‘Don\’t worry’
• myStr = ‘C:\\Python\\’ other special chars: ’\n’ – line break; ‘\t’ – tab
• Use ’’’ or ””” to begin/end a a string literally.

28

Built-in Classes (Cont’d)
• set:

• A set of elements without ordering (no repeating elements)
• Implemented using hash table (will talk in the future)
• Only contains immutables as values (no sets or lists as values)
• Immutable version – frozenset
• Use curly braces ’ { } ’
• Empty set: use set(), not {} – reserved for empty dictionary
• { ‘red’ , ‘green’ , ‘blue’ }
• Constructor: convert an iterable input into a set of its element

mySet = set(‘hello’) is equivalent to mySet = { ‘h’ , ‘e’ , ‘l’, ‘o’ }.
Why one less ‘l’?

29

Built-in Classes (Cont’d)
• dict (dictionary):

• Mappings from keys to values
myDict = { ‘ga’ : ‘Irish’ , ‘de’ : ‘German’ }
pairs = [(‘ga’ , ‘Irish’), (‘de’ , ‘German’)]; myDict = dict(pairs)
myDict = { } # empty dictionary

30

Statements
• A statement: a unit of code that the Python interpreter can execute
• So far: print, assignment
• More to come
• Interactive mode: execute statements one by one
• Script/code: execute sequentially
• Change of order of execution – conditional, loop, etc.

31

Operators

32

Expressions

33

Order of operations

34

• Follows mathematical convention -- PEMDAS
What are the values of
• (1+1)**(5-2)
• (1+1)**5-2
• 1+1**(5-2)

Modulus Operator

35

• 7/3 = ?
• Check if x is even or odd?
• The last two digits of x?

• +, -, * à with any float operand, output
float

• 27 / 4 = 6.75; 27 // 4 = 6; 27 % 4 =
3
• n = q * m + r q = n // m; r = n % m

m and r always have the same sign, |r| <
|m|
• -27 // 4 = -7, -27 % 4 = 1
• 27 // -4 = -7, 27 % -4 = -1

• Even for floats: 8.2 // 3.14 = 2.0, 8.2 % 3.14 =
1.92

String concatenation – “+”

36

