Lecture 5. Python Primer — Part 5

Chao Chen
Stony Brook University
Oct. 17, 2022

List vs str

e List and string — similar but different (str is immutable)
e Convert a string to a list of chars

>>> s = 'spam'
>>> t = 1list(s)
>>> print(t)
'S' |p| lal |m|]

String to list (cont’d)

* Splitting a string to words >>> s = 'pining for the fjords'
>>> t = s.split()
>>> print(t)
['pining', 'for', 'the', 'fjords']
>>> print(t[2])
the

* Specify delimiter >>> § = 'spam-spam-spam'

>>> delimiter = '-'
>>> s.split(delimiter)
['spam', 'spam', 'spam']

List to str

>>> t = ['pining', 'for', 'the', 'fjords']
>>> delimiter = ' '

>>> delimiter.join(t)

'pining for the fjords’

* Joins list into a string

fhand = open('mbox-short.txt')
for line in fhand:
line = line.rstrip(Q)
if not line.startswith('From '): continue
words = line.split()
print (words[2])

Code: http://www.py4e.com/code3/searchbs.py

Aliasing

>>> a = [1, 2, 3] >>> a = [1, 2, 3]
>>> b = [1, 2, 3] >>> Db = a

>>> a is b >>> b is a

False True

If the aliased object is mutable, changes made with one alias affect the other:

>>> b[0] = 17
>>> print(a)
(17, 2, 3]

Although this behavior can be useful, it is error-prone. In general, it is safer to
avoid aliasing when you are working with mutable objects.

List as an argument

* Passing lists as arguments to a function
* Will changes made to a list inside a function remain effective?

def change my list(mylist):

def delete head(t): :
mylist[1l] = None
del t[0] mylist.append('The End')
>>> letters = ['a', 'b', 'c'] | l=10,1,2,3]
>>> delete_head(letters) Sz gy LASE(L)
>>> print(letters) L)
['b', 'c'] [0, None, 2, 3, 'The End']

0,1,2,3]

List as an argument

 What about this example?

def change my list 2(mylist): def change my list 2(mylist):
tail = [4,5,6] tail = [4,5,6]
mylist = mylist + tail mylist.extend(tail)
1 =100,1,2,3] 1 =100,1,2,3]
change my list 2(1) change my list 2(1)
print(1l) print (1l)|

[Ol 1’ 2’ 3]

* The “assignment” ruins the aliasing!

‘ | |—>| [0,1,2,3] \

mylist [0,1,2,3,4,5,6]

Difference between operations that modifies
a list or creates a list

e Operations that modifies: append, extend, del, etc.
e Operations that creates: assignment
def bad_delete head(t):
t = t[1:] # WRONG!

* Taking a slice of t, it will not delete the head of t

Exercise 1:

Write a function called chop that takes a list and modifies it, removing the first
and last elements, and returns None.

Then write a function called middle that takes a list and returns a new list that
contains all but the first and last elements.

Difference between string operations and list
operations

e String: return new string, original string unchanged
* List: return None, original list updated

1 origin str = " \n\t Hello World \n\t" ! origin 1 = [3,2,1,0]
2 short str = origin str.strip() 2 sorted 1 = origin l.sort()
3 print("short str = ", short str) 3 print("sorted 1 = ", sorted 1)
4 print("origin str = ", origin str) 4 print("origin 1 = ", origin 1)
short str = Hello World sorted 1 = None
origin str = origin 1 = [0, 1, 2, 3]

Hello World

List modifications

* Adding an element x to the end of a list t. Which ones of the following

work?
t.append ([x])

t = t.append(x)
t + [x]
t=1tT + X

* Pass in the element to append, when “+” all arguments are lists

t .append (x)
t =t + [x]

Debugging

* What could go wrong?

fhand = open('mbox-short.txt')
for line in fhand:
words = line.split()
if words[0] != 'From' : continue

print (words[2])

Debugging

* What could go wrong?

fhand = open('mbox-short.txt')
count = 0
for line in fhand:
words = line.split()
print 'Debug:', words
if len(words) == 0 : continue
if words[0] != 'From' : continue
print (words[2])

Debugging

Exercise 2: Figure out which line of the above program is still not properly guarded.
See if you can construct a text file which causes the program to fail and then modify
the program so that the line is properly guarded and test it to make sure it handles

your new text file.

Exercise 3: Rewrite the guardian code in the above example without two if state-
ments. Instead, use a compound logical expression using the and logical operator
with a single if statement.

Exercise 4: Download a copy of the file from www.py4e.com/code3/romeo.txt

Write a program to open the file romeo.txt and read it line by line. For each line,
split the line into a list of words using the split function.

For each word, check to see if the word is already in a list. If the word is not in
the list, add it to the list.

When the program completes, sort and print the resulting words in alphabetical
order.

Enter file: romeo.txt
['Arise', 'But', 'It', 'Juliet', 'Who', 'already',

'and', 'breaks', 'east', 'envious', 'fair', 'grief',
'is', 'kill', 'light', 'moon', 'pale', 'sick', 'soft',
'sun', 'the', 'through', 'what', 'window',

'with', 'yonder']

Exercise

* https://www.pyde.com/code3/mbox.txt

Exercise 5: Write a program to read through the mail box data and when you
find line that starts with “From”, you will split the line into words using the split
function. We are interested in who sent the message, which is the second word on
the From line.

From stephen.marquardQuct.ac.za Sat Jan 5 09:14:16 2008

You will parse the From line and print out the second word for each From line,
then you will also count the number of From (not From:) lines and print out a
count at the end.

This is a good sample output with a few lines removed:

python fromcount.py

Enter a file name: mbox-short.txt
stephen.marquard@uct.ac.za
louis@media.berkeley.edu
zqianQumich.edu

[...some output removed...]

ray@media.berkeley.edu

cwen@iupui.edu

cwen@iupui.edu

cwen@iupui.edu

There were 27 lines in the file with From as the first word

Exercise

Exercise 6: Rewrite the program that prompts the user for a list of numbers and
prints out the maximum and minimum of the numbers at the end when the user
enters “done”. Write the program to store the numbers the user enters in a list
and use the max() and min() functions to compute the maximum and minimum
numbers after the loop completes.

Enter a number: 6
Enter a number: 2
Enter a number: 9
Enter a number: 3
Enter a number: 5
Enter a number: done

Maximum: 9.0
Minimum: 2.0

Dictionary

 Collection of key-value pairs

>>> eng2sp = dict() >>> print(eng2sp)
>>> print(eng2sp) {'one': 'uno'}
{}
* Indexing: use “[]” >>> eng2sp['one'] = 'uno'
>>> eng2sp = {'one': 'uno', 'two': 'dos', 'three': 'tres'}
>>> print(eng2sp)
{'one': 'uno', 'three': 'tres', 'two': 'dos'}

>>> print(eng2sp['two']) >>> print(eng2sp['four'])
'dos ' KeyError: 'four'

The end

* Length, in — check if a key is in the dictionary
>>> len(eng2sp)

3

>>> 'one' in eng2sp
True

>>> 'uno' in eng2sp
False

* keys = eng2sp.keys() -- get a collection of keys

* vals = eng2sp.vals() -- get a collection of vals

1 myd=dict()

2 for i in range(8):

3 myd[str(i)] = 1

4 print("myd = ", myd)

5 keys = myd.keys()

6 keys list = list(myd.keys())
vals = myd.values()

vals list = list(myd.values())

9 print("keys = ", keys, " type:
10 print("keys list = ", keys list,
11 print("vals = ", vals, type: "
12 print("vals list = ", vals list,

» type(keys))
" type: ", type(keys list))
, type(vals))
type: ", type(vals list))

myd = {('0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7}
keys = dict keys([‘'o', '1z‘', ‘'2', '3', '4', '5', '6', '7']) type: <clas
s 'dict keys'>

keys list = [('0O', '1', '2', '3', '4', '5"', '6', '7T'] +type: <class 'lis
t'>
vals = dict values([O, 1, 2, 3, 4, 5, 6, 7]) type: <class 'dict value
s'>

vals list = [0, 1, 2, 3, 4, 5, 6, 7] type: <class 'list'>

Checking whether a key/val exists in a dict

e Use “in” 1 myd=dict()
. 2 for i in range(1000000):
* XXX in myd 3 myd[str(i)] = i

* keys = myd.keys()

. 1 %%time
XXX in keys ,
. 1 3 mybool = True
* keys_—l'St - I'S.t(keys) 4 for i in range(1000000):
xxx in keys_list 5 mybool = str(i) in myd
6 print(mybool)
True

CPU times: user 518 ms, sys: 3 ms, total: 521 ms
Wall time: 520 ms

1 %%time
2
3 mybool = True
4 keys = myd.keys()
5 for 1 in range(10000):
6 mybool = str(i) in keys
7 print(mybool)
True

CPU times: user 6.15 ms, sys: 1.25 ms, total: 7.41 ms
wWall time: 6.31 ms

o\°
o\°
r’-
M-
3
()]

1
2
3 mybool = True
4 key list = list(myd.keys())
5 for i in range(hOOOO):
6 mybool = str(i) in key list
7 print (mybool)
True

CPU times: user 759 ms, sys: 7.31 ms, total: 767 ms
Wall time: 780 ms

1 %%time

mybool = True

keys = myd.keys()

for i in range(100000):
mybool = str(i) in keys

print (mybool)

N O & W

True
CPU times: user 49.7 ms, sys: 1.99 ms, total: 51.7 ms

Wall time: 50.6 ms

1 %%time

3 mybool = True

4 key list = list(myd.keys())

5 for i in range(100000):

6 mybool = str(i) in key list
print (mybool)

True
CPU times: user lmin 18s, sys: 420 ms, total: 1lmin 18s

Wall time: 1lmin 19s

“In” — scalability issue

* range(10000)
in keys — 6.3 ms
in keys_list — 780 ms

* range(100000)
in keys —50.6 ms
in keys_list — 1min 19s = 79,000 ms

* keys —implemented using hash table
constant operation for each "in” operation
e keys list — linear operation
can be as expensive as the list length (1,000,000 here)

Exercise

Exercise 1: [wordlist2]

Write a program that reads the words in words.txt and stores them as keys in
a dictionary. It doesn’t matter what the values are. Then you can use the in
operator as a fast way to check whether a string is in the dictionary.

Suppose you are given a string and you want to count how many times each letter
appears. There are several ways you could do it:

1. You could create 26 variables, one for each letter of the alphabet. Then you
could traverse the string and, for each character, increment the corresponding
counter, probably using a chained conditional.

2. You could create a list with 26 elements. Then you could convert each
character to a number (using the built-in function ord), use the number as
an index into the list, and increment the appropriate counter.

3. You could create a dictionary with characters as keys and counters as the
corresponding values. The first time you see a character, you would add
an item to the dictionary. After that you would increment the value of an
existing item.

Counting letters

* Dictionary implementation:
* do not need to know what letters are,
* only create entries for letters appeared

word = 'brontosaurus'
d = dict()
for ¢ in word:
if ¢ not in d:
dlc] =1
else:
dlc] = dlc] + 1
print(d)

Counting letters

* Simplify with get (return the second arg if the key does not exist)

>>> counts = { 'chuck' : 1 , 'annie' : 42, 'jan': 100}
>>> print(counts.get('jan', 0))

100

>>> print(counts.get('tim', 0))

0

word = 'brontosaurus'

d = dict()

for ¢ in word:
dlc] = d.get(c,0) + 1
print(d)

Counting words in a document

fname = input('Enter the file name: ')

try:
fhand = open(fname)

except:
print('File cannot be opened:', fname)
exit()

counts = dict()
for line in fhand:
words = line.split()
for word in words:
if word not in counts:
counts[word] = 1
else:
counts [word] += 1

print (counts)

But soft what light through yonder window breaks
It is the east and Juliet is the sun

Arise fair sun and kill the envious moon

Who is already sick and pale with grief

python countl.py

Enter the file name: romeo.txt

{'and': 3, 'envious': 1, 'already': 1, 'fair': 1,

'is': 3, 'through': 1, 'pale': 1, 'yonder': 1,

'what': 1, 'sun': 2, 'Who': 1, 'But': 1, 'moon': 1,
'window': 1, 'sick': 1, 'east': 1, 'breaks': 1,
'grief': 1, 'with': 1, 'light': 1, 'It': 1, 'Arise': 1,
'kill': 1, 'the': 3, 'soft': 1, 'Juliet': 1}

Code: http://www.py4e.com/code3/countl.py

Enumerate through a counting dictionary

counts = { 'chuck' : 1 , 'annie' : 42, 'jan': 100}
for key in counts:
print (key, countsl[key])

jan 100
chuck 1
annie 42

* How to: -
| jan 100
* Only output the ones with >10 counts __ .+ 49

annie 42
* Out the words in alphabetical order chuck 1

jan 100

Solutions

counts = { 'chuck' : 1 ,

for key in counts:
if countsl[key] > 10 :
print (key, counts[key])

'annie'

jan 100
annie 42

counts = { 'chuck' : 1 , 'annie'
1st = list(counts.keys())

print (1st)

1st.sort()

for key in lst:

print (key, counts[key])

: 42,

. 42,

'jan':

'jan':

100}

100}

['jan', 'chuck', 'annie']
annie 42

chuck 1

jan 100

Advanced parsing: removing all punctuations

O WIN =

import string
print(string.punctuation)

line = "But, soft!!!! what light through yonder window breaks?"
print(line)
print(line.translate(line.maketrans('','',string.punctuation)))

LUHSRE () *H, -/ 1;<=>2Q@[\]"_"{]|}~
But, soft!!!! what light through yonder window breaks?
But soft what light through yonder window breaks

1
2
3
4

print(line.translate(line.maketrans(",!?","###")))

print(line.translate(
line.maketrans(string.punctuation, "#"*len(string.punctuation))))

print(line.translate(line.maketrans(",!?","###",'1"')))

But# soft#### what light through yonder window breaks#
But# soft#### what light through yonder window breaks#
But# soft#### what lght through yonder wndow breaks#

import string

fname = input('Enter the file name: ')
try:
fhand = open(fname)

except:
print('File cannot be opened:', fname)

exit()

counts = dict()
for line in fhand:
line = line.rstrip()

line = line.translate(line.maketrans('', '', string.punctuation))

line = line.lower()
words = line.split()

for word in words: Enter the file name:
if word not in counts: {'swearst':
counts [word] = 1 'kinsmen': 2,
else: a': 24, 'orchard': 2,
counts[word] += 1 'maiden':

'it': 22,

print (counts)

Advanced parsing:
* removing all punctuations
e convert all words to lowercases

romeo—-full.txt
'afeard':
'thinkst':
'light': 5,
'whiteupturned': 1,
'canst':

'all': 6,
'what ' :
'lovers':
'juliet': 32,

'leans': 'having': 1,

'leave': 2, 'these': 2,
: 24, 'cloak': 1,

'romeo': 40,
'gentleman': 1,

.}

Exercise

e https://www.pyde.com/code3/mbox.txt

e https://www.pyde.com/code3/mbox-short.txt

Exercise 2: Write a program that categorizes each mail message by which day of
the week the commit was done. To do this look for lines that start with “From?”,
then look for the third word and keep a running count of each of the days of the
week. At the end of the program print out the contents of your dictionary (order
does not matter).

Sample Line:
From stephen.marquard@uct.ac.za Sat Jan b5 09:14:16 2008
Sample Execution:

python dow.py
Enter a file name: mbox-short.txt
{'Fri': 20, 'Thu': 6, 'Sat': 1}

https://www.py4e.com/code3/mbox.txt
https://www.py4e.com/code3/mbox-short.txt

Exercise

Exercise 3: Write a program to read through a mail log, build a histogram using

a dictionary to count how many messages have come from each email address, and
print the dictionary.

Enter file name: mbox-short.txt

{'gopal.ramasammycook@gmail.com': 1, 'louis@media.berkeley.edu': 3,
'cwen@Qiupui.edu': 5, 'antranig@caret.cam.ac.uk': 1,
'rjlowe@iupui.edu': 2, 'gsilverQumich.edu': 3,
'david.horwitz@uct.ac.za': 4, 'wagnermr@Qiupui.edu': 1,
'zqian@umich.edu': 4, 'stephen.marquard@uct.ac.za': 2,
'ray@media.berkeley.edu': 1}

Exercise

Exercise 4: Add code to the above program to figure out who has the most
messages in the file.

After all the data has been read and the dictionary has been created, look through
the dictionary using a maximum loop (see Section [maximumloop]) to find who
has the most messages and print how many messages the person has.

Enter a file name: mbox-short.txt
cwen@iupui.edu 5

Enter a file name: mbox.txt
zqian@umich.edu 195

Exercise

Exercise 5: This program records the domain name (instead of the address) where
the message was sent from instead of who the mail came from (i.e., the whole email
address). At the end of the program, print out the contents of your dictionary.

python schoolcount.py

Enter a file name: mbox-short.txt

{'media.berkeley.edu': 4, 'uct.ac.za': 6, 'umich.edu': 7,
'gmail.com': 1, 'caret.cam.ac.uk': 1, 'iupui.edu': 8}

Homework

* Given data files from UCI (will give a list)

* Convert the data into a list of lists

* A list of data, each datum is a patient or other person/object instances
Each datum is a list of attributes (same length, same correspondence)
If continuous value, keep the value

If categorical value/nominal value, construct a set/dictionary with the
attribute being the key

If missing value “?”, use None

Homework

 Compute basic statistics of each attribute
 All statistics of the attributes form a list (one attribute per item)
* If a continuous-valued attribute: save max, min, mean, standard deviation
* |f a categorical: construct a dictionary to count frequencies
* Skip missing value “"None” when you calculate these statistics

* Generate a normalized data
* Filling missing value:
* for continuous-valued attributes: use mean
* For categorical-valued: use maximal frequency value
* Normalize the data

* For continuous-valued attributes: new val = (org val — mean) / std
* For categorical: map valuesto 0, 1, 2, ..., L, have a dictionary mapping org val to new val

The End

* Thank you

