
Lecture 6. Python Primer – Part 6

Chao Chen
Stony Brook University

Oct. 24, 2022

Tuple
• Immutable, sequence
• Initialization

• Creating one-element tuples

Tuple

• Creating tuples (continued)

• Accessing (mostly like list)

Tuple

• Immutable – cannot modify its content

Tuple

• Comparison
• Comparing the first element, then the second, etc.

Tuple
• Assignment from tuple to tuple

Tuple
• Parenthesis is often omitted

• # of elements on left and right have to match

Tuple
• An easy way to swap values of two variables (not possible in C++/java)

• Useful when a function returns multiple values

Tuple

• Right hand side can also be a list
• But this is not recommended (conceptually confusing to me)

Tuple
• Benefit of tuple compared to list -- efficiency

“in” – scalability issue revisited

• range(10000)
in keys – 6.3 ms in keys_tuple – 7.87 ms
in keys_list – 780 ms
• range(100000)

in keys – 50.6 ms in keys_tuple – 61.7 ms
in keys_list – 1min 19s = 79,000 ms
• keys and keys_tuple – implemented using hash table

constant operation for each ”in” operation
• keys_list – linear operation

can be as expensive as the list length (1,000,000 here)
Tuple is more efficient than list.

What’s the catch – flexibility!

Tuple and dictionary

• Using items() function of a dictionary, getting a collection of tuples,
each tuple – (key, val)

Tuple

• aaa

Tuple

• aaa

Tuple

• List, dictionaries, tuples --- data structures
• Shape error – wrong type, size, composition, wrong shape
• Debugging tips

Tuple

• Debugging tips (cont’d)

Tuple

• aaa

Tuple

• aaa

Tuple

• aaa

Built-in Classes
• Immutable: object value cannot be changed
• Identifier can be reassigned

20

Built-in Classes (Cont’d)
• bool:

• Values: True or False; bool() returns False; bool(val), with val from other types
• int (automatically choose internal representation based on magnitude):

• initiate by int values: myInt = 10
• Binary, octal and hexadecimal: 0b1011, 0o52, 0x7f (base of 2, 8 and 16)
• int() returns 0
• int(val) return truncated value for val being float: int(3.4), int(3.99), int(-3.9)
• int(‘137’) converts a string to int if possible
• int(‘7f’, 16) converts from a different base to decimal
• Decimal to other bases: bin(…), oct(…), hex(…)

• float (close to double in Java and C/C++):
• myFloat = 8.9 myFloat = 8. myFloat = .8 myFloat = 6.022e23 myFloat = float()
• myFloat = float(2) myFloat = float(‘3.14’)
• sys.float_info

• type(…) – check the type of a variable
21

Built-in Classes (Cont’d)
• Sequence classes (list, tuple, str): A collection of values with (important) ordering
• list (mutable)

• referential: stores an array of references to objects

• Zero-Indexed: primes[0], ..., primes[len(primes)-1]
• Can be a mixture of (arbitrary) types, init using values/references

v_str = ‘tmp str’; v_float = 3.14
myList = [3, v_str, v_float, ’tmp str again’]

• Init using an empty list: myList = []
• Issue: list of lists, aliases for entries, be careful! Not an issue for basic types.

• Disclaimer: when copying code from this slide, the “ ’ ” symbol can be problematic. 22

Built-in Classes (Cont’d)
• tuple:

• Immutable version of list, use ‘()’ instead of ‘[]’
• Once initialized, cannot change values
• For single element tuple, use myTuple = (17,) instead of myTuple = (17), why?

• str (also immutable):
• myStr = ’sample’ or “sample”
• myStr = ”Don’t worry” or ‘Don\’t worry’
• myStr = ‘C:\\Python\\’ other special chars: ’\n’ – line break; ‘\t’ – tab
• Use ’’’ or ””” to begin/end a a string literally.

23

Built-in Classes (Cont’d)
• set:

• A set of elements without ordering (no repeating elements)
• Implemented using hash table (will talk in the future)
• Only contains immutables as values (no sets or lists as values)
• Immutable version – frozenset
• Use curly braces ’ { } ’
• Empty set: use set(), not {} – reserved for empty dictionary
• { ‘red’ , ‘green’ , ‘blue’ }
• Constructor: convert an iterable input into a set of its element

mySet = set(‘hello’) is equivalent to mySet = { ‘h’ , ‘e’ , ‘l’, ‘o’ }.
Why one less ‘l’?

24

Expressions and Operators (Cont’d)
• Sequence operators (tuple, str, list):

• Indexing: 0 to n-1, -1 = n-1, -2 = n-2; Slice: half-open interval of idx
• For lists: s[i] = new_val; del s[i] à remove i-th entry what if s[i] has an alias?
• Same thing (replace or delete) can be done on a sublist via slicing.
• For string, ’amp’ in ‘example’ Q: what will happen with [2,3,4] in [1,2,3,4,5]

25

Expressions and Operators (Cont’d)
• Sequence comparison (tuple, str, list):

• Lexicographical, length does not count
• [5,6,9] < [5,7,1] – True or False? [5,7,-9] < [5,7] -- True or False?

26

Expressions and Operators (Cont’d)
• Set/frozenset operators:

• S1 ^ S2 == (S1 – S2) | (S2-S1) == (S1 | S2) – (S1 & S2)
• Set also supports basic operations like add, remove, etc (will cover in the future)

27

Expressions and Operators (Cont’d)
• dict operators:

• Comparison, e.g., <, is invalid.
• d1 == d2 if and only if d1 and d2 contain the same set of keys and also same values

28

Expressions and Operators (Cont’d)
• Extended assignment:

• For immutables: count += 5 --> allocate a new object
• For lists:

29

Loops

• What is the outcome when A = [0,1,2,7,4,5]

30

What does this code do? Why does this code crash?

What does this code do?

Loops

31

What does this code do?

Why does this code crash?

j < len(A)

A[j] != 7

print(A[j])
j += 1

True

TrueFalse

False

Next code block

A[j] != 7

j < len(A)

print(A[j])
j += 1

True

TrueFalse

False

Next code blockNew Question: what about
while (cond 1) or (cond 2):

Loops (cont’d)

32

Calculating sum of
elements in a list

Calculating max of
elements in a list

Q1: Calculating average of elements in a list?
Calculating average of even-valued elements in a list?

Q2: how to get the index of the largest element?

Loops (cont’d)
• for loop with explicit indexing

Example:
get the largest element’s index.

• What are range(10), range(1,10), range(1,10,2)?

• Controlling loops
• Break: stop loop and exit
• Continue: skip the rest of the current loop

• Example:
• checking if a target number exists in the data list
• Count # of times the target number appears 33

Loops (cont’d)
• Controlling loops

• Break: stop loop and exit
• Continue: skip the rest of the current loop

• What do the following codes do?

• for is simpler than while in referring to the iterable content
Q: how to rewrite a for loop using while? When the iterable is a set?

34

tot = 0
for item in data:

if item % 2 == 0:
break

tot += item
print(tot)

tot = 0
for item in data:

if item % 2 == 0:
continue

tot += item
print(tot)

Functions
• Methods (specifically bounded with classes, will talk later)
• First line: signature

• Has: identifier, parameters (with identifiers)
• Has not: returning, types of params (as in C, Java)
• Misuse will only be detected in run time.

• Body (indented block)
• Inside: namespace – local scope (param names)

• Return: one or multiple.
if no return line, return None

• To call:

35

Functions
• Information passing:

• By references: params and returns (In other languages: also by values etc.)
• Think of it as assignment statements

• Equivalent to
in a local scope

• Same for returning: prizes get assigned the object created inside
prizes (global) = n (local) 36

Functions
• Mutable Parameters

• Can also do
data.append(‘F’)

• what happens if we have the line: “data = []” ?
• Default param values

• polymorphic
• def foo(a, b=20, c=30):

return a + b + c
• Can pass in 1, 2 or 3 params

print(foo(10)); print(foo(10, 10));
print(foo(10, 10, 10)); print(foo());
print(foo(a=10)); print(foo(10, c=10));
print(foo(b=10, c=10))

• def bar(a, b=15, c) -- illegal
37

Functions
• Another example

38

Functions
• Another example: range (three forms)

range(n); range(start, stop); range(start, stop, step);
• How to implement this?

• max(a, b, key=abs); max(a, b, c, d);

39

Built-in Functions

Built-in Functions (cont’d)

c = map(operator.add,[-2,1,-9],[-1,-1,-1])

Built-in Functions (cont’d)

Input & Output

• Output
print(a, b, c, sep=‘:’); print(a,b,c,sep=‘’)? print(..., end = ’#’)
can also print to a file rather than console
• Input

a prompt message for input, returns a string

38

Input & Output (cont’d)

44

Files

45

• fp = open(‘sample.txt’); fp = open(‘sample.txt’, ‘w’);
• default mode: ‘r’ – read only,
• ‘w’ – writing, rewrite/create the whole thing
• ‘a’ – appending to the end of the existing file
• ‘wb’, ‘rb’ – treating the file as a binary file (for better storage efficiency)

• read/write (next slide)
• When done: fp.close()

Files

46

• for line in fp:
• fp.write(‘Hello World.\n’) – write does not add end-of-line

Iterator

47

• An iterator is an object that manages an iteration through a series of values.
• An iterable is an object, obj, that produces an iterator via the syntax iter(obj).
• data = [1, 2, 4, 8]; i = iter(data);
• Each call next(i) returns an element of data, until StopIteration exception
• seversed(s)
• Can have multiple ones. Will report updated values if the list is updated.
• More in future lectures

• Implicit iterables:
range(1000000), lazy evaluation,
to use: for j in range(1000000):
Convert to list: list(range(1000000))

Generator

48

• Generator: a class acting like an iterator
• Implementation: use yield, not return
• A traditional function, returning a list of factors of n

• A generator (usage: for factor in factors(100):)

To Speed up

49

Compare at n = 100, what is the difference?

Another Example

50

0, 1, 1, 2, 3, 5, 8, ….

Conditional Expression

51

• Improves readability (but do not abuse......)

• Even simpler:

Packing / Unpacking of Sequences

52

• Automatic packing: comma-separated expressions --> a single tuple
data = 2, 4, 6, 8 à data = (2, 4, 6, 8)

• Consider a function with return x,y
• r = foo(...) à r is a tuple with (x,y)
• rx, ry = foo(...) à rx = x, ry = y

• Examples:
• quotient, remainder = divmod(a, b), or myPair = divmod(a,b)
• a, b, c, d = range(7, 11)
• for x, y in [(7, 2), (5, 8), (6, 4)]:
• for k, v in my_dict.items():

• Simultaneous assignments:
• x, y, z = 6, 2, 5
• j, k = k, j

a convenient way to swap contents of j and k

Modules and Import
• Additional libraries: modules. To use: import
• from math import pi, sqrt

a = sqrt(pi)
• import math

a = math.sqrt(math.pi)
• Aliasing for convenience

import numpy as np
• Define count function in utility.py

from utility import count (will explain soon)

53

Modules and Import

54

The end

