Lecture 6. Python Primer — Part 6

Chao Chen
Stony Brook University
Oct. 24, 2022

Tuple

* Immutable, sequence

* |nitialization

>>> t = lat, tbl, 'C', ldl, 'e! >>> t = (lal’ lb!, lcl’ ldl, |e|)
* Creating one-element tuples

>>> t1 = ('a',) >>> t2 = ('a')

>>> type(tl) >>> type(t2)

<type 'tuple'> <type 'str'>

1Fun fact: The word “tuple” comes from the names given to sequences of numbers of varying
lengths: single, double, triple, quadruple, quituple, sextuple, septuple, etc.

Tuple

 Creating tuples (continued)

>>> t = tuple() >>> t = tuple('lupins')
>>> print(t) >>> print(t)
() (!ll’ "ll', 'P', 'i', |n|’ 'S')

e Accessing (mostly like list)

>>>t = ('a', 'b', 'c', 'd', 'e") >>> print(t[1:3])
>>> print (t[0]) ('b', 'c")

Ial

Tuple

* Immutable — cannot modify its content

>>> t[0] = 'A'

TypeError: object doesn't support item assignment

You can’t modify the elements of a tuple, but you can replace one tuple with
another:

>>> t = ('A',) + t[1:]
>>> print(t)
(IAU’ lbl’ ICI’ ldl’ lel)

Tuple

* Comparison
 Comparing the first element, then the second, etc.

>>> (0, 1, 2) < (0, 3, 4)

True

>>> (0, 1, 2000000) < (0, 3, 4)
True

Tuple

* Assignment from tuple to tuple

1 mylist = [0, 1, 2, 3, 4]

2 summary = (min(mylist), max(mylist), sum(mylist))
3 (X, Y, 2) = summary
4 print(x, y, 2)

0 4 10

1 mylist = [0, 1, 2, 3, 4]

2 summary = (min(mylist), max(mylist), sum(mylist))
3 (X, Y, 2) = summary
4 print(x, y, 2)

0 4 10

Tuple

 Parenthesis is often omitted

mylist = [0, 1, 2, 3, 4]

X, YV, 2 = min(mylist), max(mylist), sum(mylist)
print(x, y, 2)

0 4 10

 # of elements on left and right have to match
>>> a, b=1, 2, 3

ValueError: too many values to unpack

Tuple

e An easy way to swap values of two variables (not possible in C++/java)

>>> a, b =Db, a
e Useful when a function returns multiple values

def summary(mylist):
return min(mylist), max(mylist), sum(mylist)

l =10, 1, 2, 3, 4]
X, YV, 2 = summary(l)
print(x, y, 2z)

0 4 10

Tuple

* Right hand side can also be a list
 But this is not recommended (conceptually confusing to me)

>>> m = ['have', 'fun']
>>> x = m[0]

>>> y = m[1]

>>> x

'have'

>>> y

' fun

>>>

Tuple

* Benefit of tuple compared to list -- efficiency

1 %%time
3 mybool = True
! key tuple = tuple(myd.keys())
» for i in range(10000):
mybool = str(i) in key tuple

| . print (mybool)
1 %%time

False
mybool = True CPU times: user 6.76 ms, sys: 1.78 ms, total: 8.54 ms

key_tuple = list(myd.keys())| wall time: 7.87 ms
for i in range(100000):

mybool = str(i) in key tuple
print (mybool)

False
CPU times: user 58.5 ms, sys: 3.87 ms, total: 62.4 ms

Wall time: 61.7 ms

“In” — scalability issue revisited

* range(10000)
in keys — 6.3 ms in keys_tuple —7.87 ms
in keys_list — 780 ms

* range(100000)
in keys —50.6 ms in keys_tuple —61.7 ms
in keys_list — 1min 19s = 79,000 ms

* keys and keys tuple —implemented using hash table

constant operation for each ™
e keys_list — linear operation Tuple is more efficient than list.

can be as expensive as the lis What's the catch — flexibility!

Tuple and dictionary

e Using items() function of a dictionary, getting a collection of tuples,
each tuple — (key, val)

>>>d = {'a':10, 'b':1, 'c':22} >> d = {'a':10, 'b':1, 'c':22}
>>> t = list(d.items()) >>> t = list(d.items())
>>> print(t) >>> t

[(('b', 1), ('a', 10), ('c', 22)] [('p', 1), (ta', 10), ('c', 22)]
>>> t.sort()

for key, val in list(d.items()): >>> 1
print(val, key) [('a', 10), ('b', 1), ('c', 22)]

import string

fhand = open('romeo-full.txt')

counts = dict()

for line in fhand:
line = line.translate(string.punctuation)
line = line.lower()

words = line.split() 61 i
for word in words:
if word not in counts: 42 and
counts [word] = 1 40 romeo
else: 34 to
counts[word] += 1 34 the
Sort the dictionary by value 32 thou
1st = 1list() 32 juliet
for key, val in list(counts.items()):
1st.append((val, key)) 30 that
29 my
1st.sort(reverse=True) 24 thee

for key, val in 1st[:10]:
print (key, val)

Tuple

1. In some contexts, like a return statement, it is syntactically simpler to create
a tuple than a list. In other contexts, you might prefer a list.

2. If you want to use a sequence as a dictionary key, you have to use an im-
mutable type like a tuple or string.

3. If you are passing a sequence as an argument to a function, using tuples
reduces the potential for unexpected behavior due to aliasing.

Because tuples are immutable, they don’t provide methods like sort and reverse,
which modify existing lists. However Python provides the built-in functions sorted
and reversed, which take any sequence as a parameter and return a new sequence
with the same elements in a different order.

Tuple

* List, dictionaries, tuples --- data structures
* Shape error — wrong type, size, composition, wrong shape
* Debugging tips

reading Examine your code, read it back to yourself, and check that it says what
you meant to say.

running Experiment by making changes and running different versions. Often
if you display the right thing at the right place in the program, the prob-
lem becomes obvious, but sometimes you have to spend some time to build

scaffolding.

Tuple

* Debugging tips (cont’d)

ruminating Take some time to think! What kind of error is it: syntax, runtime,
semantic? What information can you get from the error messages, or from
the output of the program? What kind of error could cause the problem
you’re seeing? What did you change last, before the problem appeared?

retreating At some point, the best thing to do is back off, undoing recent changes,
until you get back to a program that works and that you understand. Then
you can start rebuilding.

Tuple

Exercise 1: Revise a previous program as follows: Read and parse the “From”

lines and pull out the addresses from the line. Count the number of messages from
each person using a dictionary.

After all the data has been read, print the person with the most commits by
creating a list of (count, email) tuples from the dictionary. Then sort the list in
reverse order and print out the person who has the most commits.

Sample Line:
From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Enter a file name: mbox-short.txt
cwen@iupui.edu 5

Enter a file name: mbox.txt
zqianQumich.edu 195

Exercise 2: This program counts the distribution of the hour of the day for each
of the messages. You can pull the hour from the “From” line by finding the time
string and then splitting that string into parts using the colon character. Once
you have accumulated the counts for each hour, print out the counts, one per line,
sorted by hour as shown below.

Sample Execution:

python timeofday.py

Enter a file name: mbox-short.txt
04 3

06
07
09

N = e

10
11
14
15
16
17
18
19

= =~ NP NNDNEEOW

Tuple

Exercise 3: Write a program that reads a file and prints the letters in decreasing
order of frequency. Your program should convert all the input to lower case and
only count the letters a-z. Your program should not count spaces, digits, punctua-
tion, or anything other than the letters a-z. Find text samples from several different
languages and see how letter frequency varies between languages. Compare your
results with the tables at wikipedia.org/wiki/Letter frequencies.

Built-in Classes

* Immutable: object value cannot be changed

* |dentifier can be reassigned

Class Description Immutable?
bool Boolean value v

int integer (arbitrary magnitude) v
float floating-point number v

list mutable sequence of objects

tuple immutable sequence of objects v

str character string v

set unordered set of distinct objects

frozenset | immutable form of set class v

dict associative mapping (aka dictionary)

Table 1.2: Commonly used built-in classes for Python

20

Built-in Classes (Cont’d)

* bool:
e Values: True or False; bool() returns False; bool(val), with val from other types

* int (automatically choose internal representation based on magnitude):
* initiate by int values: myInt = 10
e Binary, octal and hexadecimal: 0b1011, 0052, Ox7f (base of 2, 8 and 16)
 int() returns O
* int(val) return truncated value for val being float: int(3.4), int(3.99), int(-3.9)
* int(‘137’) converts a string to int if possible
* int(‘7f’, 16) converts from a different base to decimal
e Decimal to other bases: bin(...), oct(...), hex(...)

* float (close to double in Java and C/C++):
 myFloat = 8.9 myFloat=8. myFloat=.8 myFloat =6.022e23 myFloat = float()
* myFloat = float(2) myFloat = float(‘3.14)
 sys.float_info

* type(...) — check the type of a variable

Built-in Classes (Cont’d)

* Sequence classes (list, tuple, str): A collection of values with (important) ordering

e list (mutable)
* referential: stores an array of references to objects

EBEDIEDERICHI) €D EIIEDIEIED

\\ \. \X t& I JT f J/‘ J/ o’/.//

e Zero-Indexed: primes|[0], ..., primes[len(primes)-1]

* Can be a mixture of (arbitrary) types, init using values/references
v_str=‘tmp str’; v_float =3.14
myList = [3, v_str, v_float, "tmp str again’]

* |nit using an empty list: myList =[]

* |ssue: list of lists, aliases for entries, be careful! Not an issue for basic types.

primes:

* Disclaimer: when copying code from this slide, the “’ ” symbol can be problematic. -

Built-in Classes (Cont’d)

* tuple:
* Immutable version of list, use ()’ instead of ‘[]’
* Once initialized, cannot change values
* For single element tuple, use myTuple = (17,) instead of myTuple = (17), why?

e str (also immutable):
* myStr =’sample’ or “sample” S|AM|P|LIE
* myStr ="”Don’t worry” or ‘Don\’t worry’ 0O 1 2 3 4 5
* myStr = ‘C:\\Python\\’ other special chars: '\n’ — line break; ‘\t’ — tab
* Use”” or ””” to begin/end a a string literally.

print("""” Welcome to the GPA calculator.
Please enter all your letter grades, one per line.
Enter a blank line to designate the end.””")

Built-in Classes (Cont’d)

* set:

* A set of elements without ordering (no repeating elements)
Implemented using hash table (will talk in the future)
Only contains immutables as values (no sets or lists as values)
Immutable version — frozenset
Use curly braces’ { }"’
Empty set: use set(), not {} — reserved for empty dictionary
{‘red’, ‘green’, ‘blue’ }
Constructor: convert an iterable input into a set of its element
mySet = set(‘hello’) is equivalent to mySet ={ ‘h’, ‘e’, I', ‘o’ }.
Why one less ‘|'?

Expressions and Operators (Cont’d)

* Sequence operators (tuple, str, list):

s[j] element at index j
s[start:stop] slice including indices [start,stop)
s[start:stop:step] slice including indices start, start + step,
start 4+ 2#step, ..., up to but not equalling or stop

s+t concatenation of sequences
k x s shorthand fors + s + s + ... (k times)
val in s containment check
val not in s non-containment check
* Indexing: 0ton-1,-1=n-1, -2 =n-2; Slice: half-open interval of idx
* For lists: s[i] = new_val; del s[i] 2 remove i-th entry what if s[i] has an alias?

Same thing (replace or delete) can be done on a sublist via slicing.

For string, ‘amp’ in ‘example’ Q: what will happen with [2,3,4] in [1,2,3,4,5]

25

Expressions and Operators (Cont’d)

* Sequence comparison (tuple, str, list):

s ==1¢1
sl=1t
s <t

s<=1t1
s >t

s >=1t

ent
hical

nical

lexicograp.

equivalent (element by element)
not equiva
lexicograp!
lexicograp!
lexicograp.

ly less than
nicall

y less than or equal to

ly greater than

hical

ly greater than or equal to

* Lexicographical, length does not count
* [5,6,9] <[5,7,1] — True or False?

[5,7,-9] < [5,7] -- True or False?

26

Expressions and Operators (Cont’d)

 Set/frozenset operators: key in s containment check
key not in s non-containment check
sl ==s2 sl isequivalent to s2
sl I=s2 sl 1s not equivalent to s2
sl <=s2 sl issubset of s2
sl < s2 sl is proper subset of s2
sl >=s2 sl is superset of s2

sl > s2 sl 1s proper superset of s2

sl | s2 the union of s1 and s2

sl & s2 the intersection of s1 and s2

sl — s2 the set of elements in s1 but not s2

sl ™ s2 the set of elements in precisely one of sl or s2

e S17S2==(S1-S2) | (S2-S1)==(S1 | S2)—(S1 & S2)
» Set also supports basic operations like add, remove, etc (will cover in the future)

27

Expressions and Operators (Cont’d)

 dict operators:

d[key] value associated with given key
d[key] = value set (or reset) the value associated with given key
del d[key] remove key and its associated value from dictionary
key in d containment check

key not ind non-containment check
dl == d2 d1 is equivalent to d2
dl !=d2 dl is not equivalent to d2

 Comparison, e.g., <, is invalid.
 d1==d2if and only if d1 and d2 contain the same set of keys and also same values

28

Expressions and Operators (Cont’d)

* Extended assighment:
* For immutables: count += 5 --> allocate a new object

* For lists:
alpha = [1, 2, 3]
beta = alpha # an alias for alpha
beta += [4, 5] # extends the original list with two more elements
beta = beta + [6, 7] # reassigns beta to a new list [1, 2, 3, 4, 5, 6, 7]

print(alpha) # will be [1, 2, 3, 4, 5]

29

Loops

while condition:

body
* What is the outcome when A =[0,1,2,7,4,5]

What does this code do? Why does this code crash?

A=10,1,2,3,4,5] A =10,1,2,3,4,5]

j=20 j=0

while j < len(A) and (A[Jj] != 7): while (A[]j] != 7) and j < len(A):
print(A[]]) print(A[]])
j+=1 j+=1

What does this code do?
A=10,1,2,3,4,5]

3=20
while j < len(A):
if (A[j] != 7):

print(A[]])
j4=1

Loops

Why does this code crash?
What does this code do? 1} = ([)01112131415]
] =

A=1(0,1,2,3,4,5] while (A[j] != 7) and j < len(A):
j =0 A A
azhile j < len(A) and (A[j] != 7): F.’rlnt(A[J])

print(A[j]) j+=1

j+=1

False

Next code block

\4

31

Loops (cont’d)

for element In iterable:

body # body may refer to 'element' as an identifier
Calculating sum of Calculating max of
elementsin a list elementsin a list
total = 0 biggest = data|0]
for val in data: for val in data:
total += val if val > biggest:
biggest = val

Q1: Calculating average of elements in a list?
Calculating average of even-valued elements in a list?
Q2: how to get the index of the largest element?

Loops (cont’d) big_index = 0

* for loop with explicit indexing

for j in range(len(data)):

if data[j] > datal|big_index]:
Example: big_index = j

get the largest element’s index.
* What are range(10), range(1,10), range(1,10,2)?

* Controlling loops
* Break: stop loop and exit
e Continue: skip the rest of the current loop

* Example:
* checking if a target number exists in the data list
* Count # of times the target number appears

found = False
for item in data:
if item == target:
found = True
break

Loops (cont’d)

* Controlling loops
* Break: stop loop and exit
e Continue: skip the rest of the current loop

* What do the following codes do?

tot=0 tot=0
for item in data: for item in data:
if item % 2 ==0: if item % 2 ==0:
break continue
tot += item tot += item
print(tot) print(tot)

* for is simpler than while in referring to the iterable content
Q: how to rewrite a for loop using while? When the iterable is a set?

Functions

* Methods (specifically bounded with classes, will talk later)
First line: signature

* Has: identifier, parameters (with identifiers) def count(data, target):
* Has not: returning, types of params (as in C, Java) n=20
 Misuse will only be detected in run time. for item in data:
* Body (indented block) if iter =1= target:
N p—y

* Inside: namespace — local scope (param names)

Return: one or multiple.
if no return line, return None

return n

Tocall: prizes = count(grades, 'A')

Functions

* Information passing:
e By references: params and returns (In other languages: also by values etc.)
* Think of it as assignment statements def count(data, target):

n=20

prizes = count(grades, 'A') for item in data:

* Equivalent to data = grades if item == target:
in a local scope target = 'A' n+=1
return n
grades *k ‘t////// data “//////_target
list str

IAl

* Same for returning: prizes get assigned the object created inside
prizes (global) = n (local)

Function
unctions def scale(data, factor):

* Mutable Parameters for j in range(len(data)):

e Can also do datalj] *= factor
data.append(‘F’)

* what happens if we have the line: “data =[]" ?

* Default param values
* polymorphic
 def foo(a, b=20, c=30):
returna+b+c

* Canpassinl, 2 or 3 params
print(foo(10)); print(foo(10, 10));
print(foo(10, 10, 10)); print(foo());
print(foo(a=10)); print(foo(10, c=10));
print(foo(b=10, c=10))

* def bar(a, b=15, c) --illegal

Functions

* Another example

def compute_gpa(grades, points={'A+':4.0, 'A':4.0, 'A-':3.67, 'B+':3.33,
'B':3.0, 'B-':2.67,'C+':2.33, 'C':2.0,
'C':1.67, 'D+':1.33, 'D':1.0, 'F':0.0}):
num_courses = 0
total_points = 0
for g in grades:
if g in points:
num_courses += 1
total_points += points|g]
return total_points / num_courses

a recognizable grade

38

Functions

* Another example: range (three forms)
range(n); range(start, stop); range(start, stop, step);

* How to implement this?

def range(start, stop=None, step=1):
if stop is None:
stop = start
start = 0

* max(a, b, key=abs); max(a, b, c, d);

39

Built-in Functions

Common Built-In Functions

Calling Syntax Description
abs(x) Return the absolute value of a number.
all(iterable) Return True if bool(e) is True for each element e.

any(iterable)

Return True if bool(e) is True for at least one element e.

chr(integer)

Return a one-character string with the given Unicode code point.

divmod(X, y) Return (x // y, x % y) as tuple, if x and y are integers.
hash(obj) Return an integer hash value for the object (see Chapter 10).
id(obyj) Return the unique integer serving as an “identity” for the object.
input(prompt) Return a string from standard input; the prompt is optional.

Built-in Functions (cont’d)

isinsta‘nce(obj', cls)

Determine if obj is an instance of the class (or a subclass).

iter(iterable)

Return a new iterator object for the parameter (see Section 1.8).

len(iterable)

Return the number of elements in the given iteration.

map(f, iterl, iter2, ...)

Return an iterator yielding the result of function calls f(el, €2, ...)
for respective elements el € iterl,e2 € iter2,...

max(iterable)

Return the largest element of the given iteration.

max(a, b, c, ...)

Return the largest of the arguments.

min(iterable)

Return the smallest element of the given iteration.

min(a, b, c, ...)

Return the smallest of the arguments.

next(iterator)

Return the next element reported by the iterator (see Section 1.8).

open(filename, mode)

Open a file with the given name and access mode.

ord(char)

Return the Unicode code point of the given character.

c = map(operator.add,[-2,1,-9],[-1,-1,-1])

Built-in Functions (cont’d)

Return the value x” (as an integer if x and y are integers);

pow(x, y) equivalent to x *x .

pow(X, Y, z) Return the value (¥’ mod z) as an integer.

print(obj1, obj2, ...) Print the arguments, with separating spaces and trailing newline.
range(stop) Construct an iteration of values 0, 1, ..., stop — 1.

range(start, stop) Construct an iteration of values start, start+1, ..., stop — 1.

range(start, stop, step)

Construct an iteration of values start, start + step, start + 2xstep, ...

reversed(sequence) Return an iteration of the sequence in reverse.
round(x) Return the nearest int value (a tie is broken toward the even value).
round(x, k) Return the value rounded to the nearest 10~ (return-type matches x).

sorted(iterable)

Return a list containing elements of the iterable in sorted order.

sum(iterable)

Return the sum of the elements in the iterable (must be numeric).

type(obj)

Return the class to which the instance obj belongs.

Input & Output

* Output
print(a, b, c, sep=""); print(a,b,c,sep=")? print(..., end ="#’)

can also print to a file rather than console

* Input
a prompt message for input, returns a string

year = int(input('In what year were you born? '))

reply = input('Enter x and y, separated by spaces: ')
pieces = reply.split() # returns a list of strings, as separated by spaces

x = float(pieces|[0])
y = float(pieces[1])

38

Input & Output (contd)

age = int(input('Enter your age in years: '))
max_heart _rate = 206.9 — (0.67 x age) # as per Med Sci Sports Exerc.
target = 0.65 * max_heart_rate

print('Your target fat-burning heart rate is', target)

44

Files

e fp = open(‘sample.txt’); fp = open(‘sample.txt’, ‘W’);
e default mode: ‘r’ —read only,
e ‘W’ —writing, rewrite/create the whole thing
* ‘@’ —appending to the end of the existing file
* ‘wb’, ‘rb’ — treating the file as a binary file (for better storage efficiency)

* read/write (next slide)

* When done: fp.close()

Files

Calling Syntax Description
fp.read() Return the (remaining) contents of a readable file as a string.
fp.read(k) Return the next k bytes of a readable file as a string.

fp.readline()

Return (remainder of) the current line of a readable file as a string.

fp.readlines()

Return all (remaining) lines of a readable file as a list of strings.

for line in fp:

Iterate all (remaining) lines of a readable file.

fp.seek(k)

Change the current position to be at the k& byte of the file.

fp.tell()

Return the current position, measured as byte-offset from the start.

fp.write(string)

Write given string at current position of the writable file.

fp.writelines(seq)

Write each of the strings of the given sequence at the current
position of the writable file. This command does not insert
any newlines, beyond those that are embedded in the strings.

print(..., file=fp)

Redirect output of print function to the file.

 forlinein fp:

e fp.write(‘Hello World.\n’) — write does not add end-of-line

46

[terator

* An iterator is an object that manages an iteration through a series of values.
* An iterable is an object, obj, that produces an iterator via the syntax iter(obj).
data = [1, 2, 4, 8];i=iter(data);

* Each call next(i) returns an element of data, until Stoplteration exception

* seversed(s)
* Can have multiple ones. Will report updated values if the list is updated.

* More in future lectures

* Implicit iterables:
range(1000000), lazy evaluation,
to use: for j in range(1000000):
Convert to list: list(range(1000000))

Generator

* Generator: a class acting like an iterator
* Implementation: use yield, not return

e A traditional function, returning a list of factors of n

def factors(n): # traditional function that computes factors
results = | | # store factors in a new list
for k in range(1,n+1):
ifn % k == 0: # divides evenly, thus k is a factor
results.append(k) # add k to the list of factors
return results # return the entire list

* A generator (usage: for factor in factors(100):)

def factors(n): # generator that computes factors
for k in range(1,n+1):
ifn % k ==0: # divides evenly, thus k is a factor

yield k # vyield this factor as next result

48

To Speed up

def factors(n): # generator that computes factors
k=1
while k x k < n: # while k < sqrt(n)
ifn % k == 0:
yield k
yield n // k
k +=1
if k x k == n: # special case if n is perfect square
yield k
Compare at n = 100, what is the difference?
def factors(n): # generator that computes factors
for k in range(1,n+1):
ifn % k == 0: # divides evenly, thus k is a factor

yield k # vyield this factor as next result

49

Another Example

def fibonacci():

a=2~0

b=1

while True:
yield a
future=a + b
a=>b
b = future

0,11,2,3,5,8, ...

keep going...
report value, a, during this pass

this will be next value reported
and subsequently this

50

Conditional Expression

exprl if condition else expr2

* Improves readability (but do not abuse......)

if n >= 0: param = n if n >= 0 else —n
param = n result = foo(param)

else:
param = —n

result = foo(param)

* Even simpler: result = foo(n if n >= 0 else —n)

51

Packing / Unpacking of Sequences

e Automatic packing: comma-separated expressions --> a single tuple
data=2,4,6,8 data = (2, 4, 6, 8)

e Consider a function with return x,y
* r=foo(...) = ris atuple with (x,y)
* rx, ry =foo(...) 2 rx=x,ry =y

* Examples:
e guotient, remainder = divmod(a, b), or myPair = divmod(a,b)
* a, b, c,d=range(7, 11)
 forx,yin|[(7, 2), (5, 8), (6, 4)]:
e for k, vin my_dict.items():

: : def fibonacci():
» Simultaneous assignments: 2 b—01
P XY, 226,25 MR =0 hile Trues
i j, k = k,J J — k) :
a convenient way to swap contents of j and k k = temp yield a

a, b=>b, a+b

52

Modules and Import

e Additional libraries: modules. To use: import
* from math import pi, sqrt
a = sqrt(pi)
* import math
a = math.sqgrt(math.pi)
 Aliasing for convenience
import numpy as np

* Define count function in utility.py
from utility import count (will explain soon)

53

Modules and Import

Existing Modules
Module Name | Description
array Provides compact array storage for primitive types.
: Defines additional data structures and abstract base classes
collections : : : :
involving collections of objects.
copy Defines general functions for making copies of objects.
heapq Provides heap-based priority queue functions (see Section 9.3.7).
math Defines common mathematical constants and functions.
0S Provides support for interactions with the operating system.
random Provides random number generation.
re Provides support for processing regular expressions.
Sys Provides additional level of interaction with the Python interpreter.
time Provides support for measuring time, or delaying a program.

Table 1.7: Some existing Python modules relevant to data structures and algorithms.

54

The end

