
Logistics

• Midterm:
• 3 hours
• Content: things before this week (exercises)
• 12pm – 11:59pm Wed

Lecture 7. Python Primer – Part 7

Chao Chen
Stony Brook University

Nov. 1, 2022

Main Function and Arguments
• In a file, the main code block starts with

if _ _name_ _ == ‘_ _main_ _’ :
• When executed -- this is the starting point
• Function definitions are provided before the main function and can be called inside main (what if after?)
• Code outside the main block and not a function definition

– also gets executed, but this is a bad habit. Should avoid.
-- Rule-of-thumb: each code line is either in a function definition or in the main

3

import sys
From utilities import count
def func1(args..):

……..
def func1(args..):

……..

if _ _name_ _ == ‘_ _main_ _’ :
........

Counting-Example.py

sys.argv[0]

sys.argv[1] sys.argv[2] sys.argv[3]

Main Function and Functions
• In a file, the main code block starts with

if _ _name_ _ == ‘_ _main_ _’ :
• Call functions from default module
• Call self-defined functions
• Call count function in utility.py
from utility import count

• Can also do
import utility
utility.count(…)

• Note: any code not in main/function def in utility.py will
be executed when importing.

• To avoid this, define the main code of utility.py
• Only run when utility.py is executed)

Used for testing the utility.py functions
• Will not run when importing utility

• Rule of thumb: anything not in a function should
be in the main code block

4

import sys
From utilities import count
def func1(args..):

……..
def func1(args..):

……..

if _ _name_ _ == ‘_ _main_ _’ :
sys.exit()
sys.argv

func1(…)
func2(…)

count(…)

counting-example.py

Scopes and Namespaces
• A name (identifier) is associated with an object within a scope (namespace)

• Global scope; local to a function call

• prizes = count(grades, ‘A’)

5

Useful tip:
In the interactive environment: use who to find currently available variables.

Scopes and Namespaces
• Checking variables within current scope:

• locals() – local scope variables
• globals() -- global scope
• vars() and dir() like locals, but can pass in an object
• vars() for objects with specific attributes only.

• Check out (can be outdated):
• https://stackoverflow.com/questions/980249/difference-between-dir-and-vars-keys-in-

python

6

https://stackoverflow.com/questions/980249/difference-between-dir-and-vars-keys-in-python

First-class Objects
• first-class objects: instances of a type that can be assigned to an identifier, passed as a

parameter, or returned by a function.
• Built-in classes (types)
• Functions
• Classes
• Example 1:

scream = print # define scream as an alias for print function
scream(‘Hello’) # uses is like print

• Example 2:
max(a, b, key=abs)

7

Random Module: Generating Random Numbers
• import random

s = [random.randint(3,10) for i in range(10)]
• random.seed -- making the random sequence repeatable
• Example

8

Random Module: Generating Random Numbers
• Pseudo-random number generator: uses a deterministic formula to generate the next

number in a sequence based upon one or more past numbers that it has generated.
• next = (a*current + b) % n --- a, b, and n carefully chosen
• Mersenne Twister

https://en.wikipedia.org/wiki/Mersenne_Twister

• In deployment:
import time
random.seed(time.time())
• In testing/debugging: use random.seed(100)

Pick a fixed seed, so the random sequence can be repeated.
• Exercises:
• Implement randint using random
• Given P(x=0) = 0.25, P(x=1) = 0.5, P(x=2) = 0.25, design a random generator which

samples according to P
myrandint(P)

9

https://en.wikipedia.org/wiki/Mersenne_Twister

From uniform to normal distribution (box-muler)

Pseudorandom

Pseudorandom

• Motivation -- efficiency

Pseudorandom

• Same seed -- same randomized sequence

Exceptions

14

• Unexpected situations: wrong input type, wrong values, etc.
Still want the program to proceed, not stopping
• exceptions (errors): objects that are raised (or thrown) by code that

encounters an unexpected circumstance.
• A raised error may be caught by a surrounding context that “handles” the

exception in an appropriate fashion.
• If uncaught, an exception causes the interpreter to stop executing the

program and to report an appropriate message to the console.
• Examples:

• use of an undefined identifier in an expression causes a NameError,
• If object foo does not support a member called bar, foo.bar() will generate an

AttributeError.
• ValueError if calling int(‘abc’)
• TypeError if abs(‘hello’)
• IndexError for wrongly indexing a list/tuple, KeyError for dict

Exceptions

15

• Catching the exception:

• Example code: counting-example.py
• Raising an exception in your own code (argument – error message):

Exceptions

16

• Particularly useful for dealing with unpredictable user input
• Use except: to process any unprocessed exception
• Use finally in the end to execute with or without exception

Exceptions (common types)

17

Questions (exercises)
• myTuple = ((2,3,4), [2,3,4])

What will happen if: myTuple[1] = 5 or myTuple[1][1] = 5 or myTuple[0][1] = 5

18

Questions (exercises)

19

Questions (exercises)

20

Questions (exercises)

21

Questions (exercises)

22

Use math.pow() https://docs.python.org/3/library/math.html
Try implementing using list comprehension
Still not fast enough --- use numpy

https://docs.python.org/3/library/math.html

Questions (exercises)

23

Questions (exercises)

24

Linear Algebra
• Vectors

• A one dimensional array.
• If not specified, assume x is a column

vector.
• Matrices

• Higher dimensional array.
• Typically denoted with capital letters.
• n rows by m columns

25

x =

0

BB@

x0

x1

. . .
xn�1

1

CCA

A =

0

BBB@

a0,0 a0,1 . . . a0,m�1

a1,0 a1,1 a1,m�1
...

. . .
...

an�1,0 an�1,1 . . . an�1,m�1

1

CCCA

Transposition

• Transposing a matrix swaps columns and rows.

26

xT =
�
x0 x1 . . . xn�1

�

x =

0

BB@

x0

x1

. . .
xn�1

1

CCA

Transposition
• Transposing a matrix swaps columns and rows.

27

A =

0

BBB@

a0,0 a0,1 . . . a0,m�1

a1,0 a1,1 a1,m�1
...

. . .
...

an�1,0 an�1,1 . . . an�1,m�1

1

CCCA

AT =

0

BBB@

a0,0 a1,0 . . . an�1,0

a0,1 a1,1 a1,m�1
...

. . .
...

a0,m�1 a1,m�1 . . . an�1,m�1

1

CCCA

Addition
• Matrices can be added to themselves iff they have the same

dimensions.
• A and B are both n-by-m matrices.

28

A+B =

0

BBB@

a0,0 + b0,0 a0,1 + b0,1 . . . a0,m�1 + b0,m�1

a1,0 + b1,0 a1,1 + b1,1 a1,m�1 + b1,m�1
...

. . .
...

an�1,0 + bn�1,0 an�1,1 + bn�1,1 . . . an�1,m�1 + bn�1,m�1

1

CCCA

Figures from
https://www.mathsisfun.com/

Hadamard Product

• Element-wise product (like addition)
• A and B are both n-by-m matrices.

• Multiplies with a scalar

29

Multiplication
• To multiply two matrices, the inner dimensions must be the

same.
• An n-by-m matrix can be multiplied by an m-by-k matrix
• Outcome: n-by-k matrix

30

Multiplication

31

Multiplication
• To multiply two matrices, the inner dimensions must

be the same.
• An n-by-m matrix can be multiplied by an m-by-k matrix

32

AB = C

cij =
mX

k=0

aik ⇤ bkj

Norm

• The norm of a vector, x, represents the Euclidean length of a vector.

33

||x|| =

vuut
n�1X

i=0

x2
i

=
q
x2
0 + x2

1 + . . .+ x2
n�1

Operations on Vectors

• u + v, u – v, ku
• Dot product: u.v = uTv = <u, v> = ?
• Norm: ||u||2 = <u, u>
• Geometric views
• <u, v> = ||u|| ||v|| cos(𝜃)
• |<u, v>| ≤ ||u|| ||v||

• Q: projection of u on v direction?

34

Transposition
• Transposition rules

• Sanity check: dimensions (ATBT)

35

Distributive/Commutative Law,

• A(B+C) = AB + AC
• Matrix/vector/scalar

• (A+B)(C+D) = ?
• ||u-v|| = ?
• Commutative law:
• Only if inner product: <u,v> = <v,u>
• Also scalar kA = Ak

36

Identity Matrix

• Matrices are invariant under multiplication by the identity matrix.

• What if A is m x n ?

37

AI = A

IA = A

NumPy – a convenient module for matrix/vector

First example

ndarray – vectors/matrices

ndarray – vectors/matrices

• Ndarray
• 1d -- vector
• 2d -- matrix
• 3d – tensor
• 4d -- …

• Same dtype for all elements (diff from list)

Creation of ndarrays

• Creation from list, list of lists

• ndim, shape, dtype

Creation of ndarrays (cont’d)

• All zeros, all ones, identity matrix, range, random matrix

Creation of ndarrays (cont’d)

• All zeros, all ones, identity matrix, range, random matrix

Arithmetic

Element-wise multiplication
Note: not matrix multiplication

Arithmetic (cont’d)

Arithmetic (cont’d)

Indexing

Indexing

Transposing (Stopped 10/31)

Universal function (ufunc)
• A function that performs element-wise operations on data in ndarrays.

Binary ufunc

Binary ufunc (cont’d)

Matrix multiplication

https://numpy.org/doc/stable/reference/generated/numpy.dot.html

• Python tends to abuse the operator.
• May be different from the linear algebra meaning.
• Recommend to use matmul instead.
• Check out details in

https://numpy.org/doc/stable/reference/generated/numpy.dot.html

More about linear algebra

Pseudorandom

Pseudorandom

• Motivation -- efficiency

Pseudorandom

• Same seed -- same randomized sequence

More about data analysis

•Pandas
•Visualization

Achieve Computations without Loops
• Loop is very expensive in matlab/python
• Avoid using it as much as possible
• In python:
• numpy matrix operations, list comprehension
• http://www.jesshamrick.com/2012/04/29/the-demise-of-

for-loops/
• http://codereview.stackexchange.com/questions/38580/fa

stest-way-to-iterate-over-numpy-array

64

http://www.jesshamrick.com/2012/04/29/the-demise-of-for-loops/
http://codereview.stackexchange.com/questions/38580/fastest-way-to-iterate-over-numpy-array

Code Demo: Shannon entropy computation
• Entropy: the optimal code length to encode a distribution

7 9

11 2

3 2

M F

bk

gr

bl

• Total = 7 + 9 + 11 + 2 + 3 + 2 = 34
• P(Gender = M, Eye Color = bk) = 7 / 34
• Entropy:

H(P) = - P(M,bk) log2P(M,bk) - P(F,bk) log2P(F,bk)
- ….

= ∑!,#−𝑃𝑖𝑗 log$ 𝑃𝑖𝑗
= -(7/34) log (7/34) – (9/34) log (9/34) - …

7/34 9/34

11/34 2/34

3/34 2/34

M F

ProbabilityCount

The end

