Logistics

e Midterm:
3 hours

e Content: things before this week (exercises)
* 12pm—11:59pm Wed

Lecture 7. Python Primer — Part 7

Chao Chen
Stony Brook University
Nov. 1, 2022

Main Function and Arguments

* |In afile, the main code block starts with

(’ .

if name_ == main_ _
 When executed -- this is the starting point
* Function definitions are provided before the main function and can be called inside main (what if after?)

* Code outside the main block and not a function definition
— also gets executed, but this is a bad habit. Should avoid.
-- Rule-of-thumb: each code line is either in a function definition or in the main

Counting-Example.py

chaochen$ python3 counting-example.py 1 12 13 1 51 7 import sys
From utilities import count
def funcl(args..):

sys.argvifO) =~ 4 X\ .

sys.argv[1] sys.argv[2] sys.argv[3]

Main Function and Functions

In a file, the mainlcode bIock’starts with

if _name_ == main_ _
Call functions from default module
Call self-defined functions

Call count function in utility.py
from utility import count

Can also do
import utilit
uti ity.countz..)

Note: any code not in main/function def in utility.py will
be executed when importing.
To avoid this, define the main code of utility.py

* Only run when utility.py is executed)
Used for testing the utility.py functions

* Will not run when importing utility

Rule of thumb: anything not in a function should
be in the main code block

counting-example.py

Scopes and Namespaces

* A name (identifier) is associated with an object within a scope (hamespace)
* Global scope; local to a function call

float St
def count(data, target): i d =
n=0 3.56 target "
for item in data: list data
if item == target: tr em
n+=1 1oy |
return n *
str str str
'A- 'B+ 'A-

e prizes = count(grades, ‘A’)

Useful tip:
In the interactive environment: use who to find currently available variables. 5

Scopes and Namespaces

* Checking variables within current scope:
* locals() — local scope variables
globals() -- global scope
vars() and dir() like locals, but can pass in an object
vars() for objects with specific attributes only.

Check out (can be outdated):
e https://stackoverflow.com/questions/980249/difference-between-dir-and-vars-keys-in-

python

https://stackoverflow.com/questions/980249/difference-between-dir-and-vars-keys-in-python

First-class Objects

* first-class objects: instances of a type that can be assigned to an identifier, passed as a
parameter, or returned by a function.

* Built-in classes (types)
* Functions
* Classes

* Example 1:
scream = print # define scream as an alias for print function

scream(‘Hello’) # uses is like print

* Example 2:
max(a, b, key=abs)

Random Module: Generating Random Numbers

* import random
s = [random.randint(3,10) for i in range(10)]

* random.seed -- making the random sequence repeatable

 Example

Syntax Description

Initializes the pseudo-random number generator
seed(hashable) based upon the hash value of the parameter
random() Returns a pseudo-random floating-point

value in the interval [0.0,1.0).

randint(a,b)

Returns a pseudo-random integer
in the closed interval [a, b].

randrange(start, stop, step)

Returns a pseudo-random integer in the standard
Python range indicated by the parameters.

choice(seq)

Returns an element of the given sequence
chosen pseudo-randomly.

shuffle(seq)

Reorders the elements of the given
sequence pseudo-randomly.

Random Module: Generating Random Numbers

* Pseudo-random number generator: uses a deterministic formula to generate the next
number in a sequence based upon one or more past numbers that it has generated.

* next = (a*current + b) % n -- a, b, and n carefully chosen

* Mersenne Twister
https://en.wikipedia.org/wiki/Mersenne Twister

* In deployment:
Import time
random.seed(time.time())

* In testing/debugging: use random.seed(100)
Pick a fixed seed, so the random sequence can be repeated.

e Exercises:

* Implement randint using random

e Given P(x=0) =0.25, P(x=1) = 0.5, P(x=2) = 0.25, design a random generator which
samples according to P

myrandint(P)

https://en.wikipedia.org/wiki/Mersenne_Twister

From uniform to normal distribution (box-muler)

Suppose U; and U, are independent samples chosen from the uniform distribution on the unit interval (0, 1). Let

Zy = Rcos(0) = /—21InU; cos(2nUs)

and

Z1 = Rsin(0©) = /—21In U sin(27Us).

Then Z; and Z; are independent random variables with a standard normal distribution. 2

t (0), 2o (+)

Pseudorandom

In [238]: samples = np.random.normal(size=(4, 4))

In [239]: samples
Out[239]:
array([[0.5732, ©0.1933, 0.4429, 1.2796],
[0.575 , 0.4339, -0.7658, -1.237],
[-0.5367, 1.8545, -0.92 , -0.1082],
[0.1525, 0.9435, -1.0953, -0.144 1])

Pseudorandom
* Motivation -- efficiency

In [240]: from random import normalvariate
In [241]: N = 1000000

In [242]: %timeit samples = [normalvariate(®, 1) for _ in range(N)]
1.77 s +- 126 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)

In [243]: %timeit np.random.normal(size=N)
61.7 ms +- 1.32 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)

Pseudorandom

* Same seed -- same randomized sequence

In [244]: np.random.seed(1234)

The data generation functions in numpy.random use a global random seed. To avoid
global state, you can use numpy.random.RandomState to create a random number

generator isolated from others:

In [245]: rng = np.random.RandomState(1234)

In [246]: rng.randn(10)

Out[246]:

array([0.4714, -1.191 , 1.4327, -0.3127, -0.7206, 0.8872, 0.8596,
-0.6365, 0.0157, -2.2427])

Exceptions

* Unexpected situations: wrong input type, wrong values, etc.
Still want the program to proceed, not stopping

» exceptions (errors): objects that are raised (or thrown) by code that
encounters an unexpected circumstance.

* A raised error may be caught by a surrounding context that “handles” the
exception in an appropriate fashion.

* |f uncaught, an exception causes the interpreter to stop executing the
program and to report an appropriate message to the console.

* Examples:
» use of an undefined identifier in an expression causes a NamekError,

If object foo does not support a member called bar, foo.bar() will generate an
AttributeError.

ValueError if calling int(‘abc’)
TypeError if abs(‘hello’)
IndexError for wrongly indexing a list/tuple, KeyError for dict

Exceptions

* Catching the exception: try:
fp = open('sample.txt')
except |OError as e:
print('Unable to open the file:', e)

* Example code: counting-example.py
* Raising an exception in your own code (argument — error message):

def sqrt(x):
if not isinstance(x, (int, float)):
raise TypeError('x must be numeric')
elif x < 0:
raise ValueError('x cannot be negative')
do the real work here...

15

Exceptions

* Particularly useful for dealing with unpredictable user input
* Use except: to process any unprocessed exception
* Use finally in the end to execute with or without exception

age = —1 # an initially invalid choice
while age <= 0:
try:
age = int(input('Enter your age in years: '))
if age <= 0:

print('Your age must be positive')
except ValueError:
print('That is an invalid age specification')
except EOFError:
print('There was an unexpected error reading input.')
raise # let's re-raise this exception

16

Exceptions (common types)

Class Description

Exception A base class for most error types

AttributeError Raised by syntax obj.foo, if obj has no member named foo
EOFError Raised if “end of file” reached for console or file input
|OError Raised upon failure of I/O operation (e.g., opening file)
IndexError Raised if index to sequence is out of bounds

KeyError Raised if nonexistent key requested for set or dictionary
Keyboardinterrupt | Raised if user types ctrl-C while program is executing
NameError Raised if nonexistent identifier used

Stoplteration Raised by next(iterator) if no element; see Section 1.8
TypeError Raised when wrong type of parameter is sent to a function
ValueError Raised when parameter has invalid value (e.g., sqrt(—5))

ZeroDivisionError

Raised when any division operator used with O as divisor

17

Questions (exercises)

* myTuple =((2,3,4), [2,3,4])
What will happen if: myTuple[1] =5 or myTuple[1][1] =5 or myTuple[0][1] =5

18

Questions (exercises)

R-1.1

R-1.2

R-1.3

Write a short Python function, is_multiple(n, m), that takes two integer
values and returns True if n is a multiple of m, that 1s, n = mi for some
integer i, and False otherwise.

Write a short Python function, is_even(k), that takes an integer value and
returns True if k is even, and False otherwise. However, your function
cannot use the multiplication, modulo, or division operators.

Write a short Python function, minmax(data), that takes a sequence of
one or more numbers, and returns the smallest and largest numbers, in the

form of a tuple of length two. Do not use the built-in functions min or
max 1n implementing your solution.

19

Questions (exercises)

R-1.6 Write a short Python function that takes a positive integer n» and returns
the sum of the squares of all the odd positive integers smaller than n.

20

Questions (exercises)

R-1.8 Python allows negative integers to be used as indices into a sequence,
such as a string. If string s has length n, and expression s[k| is used for in-
dex —n < k < 0, what is the equivalent index j > 0 such that s[j] references
the same element?

C-1.13 Write a pseudo-code description of a function that reverses a list of n
integers, so that the numbers are listed in the opposite order than they

were before, and compare this method to an equivalent Python function
for doing the same thing.

C-1.15 Write a Python function that takes a sequence of numbers and determines
if all the numbers are different from each other (that 1s, they are distinct).

21

Questions (exercises)

C-1.28 The p-norm of a vector v = (v1,v3,...,V,) in n-dimensional space is de-
fined as

IVl = /¥ +vh -9k,

For the special case of p = 2, this results in the traditional Euclidean
norm, which represents the length of the vector. For example, the Eu-
clidean norm of a two-dimensional vector with coordinates (4,3) has a
Euclidean norm of v/42 +32 = /16 +9 = /25 = 5. Give an implemen-
tation of a function named norm such that norm(v, p) returns the p-norm
value of v and norm(v) returns the Euclidean norm of v. You may assume
that v 1s a list of numbers.

Use math.pow() https://docs.python.org/3/library/math.html
Try implementing using list comprehension
Still not fast enough --- use numpy

22

https://docs.python.org/3/library/math.html

Questions (exercises)

C-1.21 Write a Python program that repeatedly reads lines from standard input
until an EOFError is raised, and then outputs those lines in reverse order
(a user can indicate end of input by typing ctrl-D).

P-1.32 Write a Python program that can simulate a simple calculator, using the
console as the exclusive input and output device. That is, each input to the
calculator, be it a number, like 12. 34 or 1034, or an operator, like + or =,
can be done on a separate line. After each such input, you should output
to the Python console what would be displayed on your calculator.

23

Questions (exercises)

P-1.35

P-1.36

The birthday paradox says that the probability that two people in a room
will have the same birthday is more than half, provided »n, the number of
people in the room, is more than 23. This property is not really a paradox,
but many people find it surprising. Design a Python program that can test
this paradox by a series of experiments on randomly generated birthdays,
which test this paradox for n = 5,10, 15,20,...,100.

Write a Python program that inputs a list of words, separated by white-
space, and outputs how many times each word appears in the list. You
need not worry about efficiency at this point, however, as this topic is
something that will be addressed later in this book.

24

Linear Algebra

* Vectors L0

* A one dimensional array. 1

* If not specified, assume x is a column X =

vector.

* Matrices Lpyn—1

* Higher dimensional array.

* Typically denoted with capital letters.

* nrows by m columns

(ao,0 ao,1 e aQg,m—1 \
ai,0 aq,1 A1, m—1

\an—l,() Ap—-1,1 - - an—l,m—l)

Transposition

* Transposing a matrix swaps columns and rows.

Transposition

* Transposing a matrix swaps columns and rows.

/ ao,0 ao,1 ag,m—1 \
ai.o aj. 1 A1, m—1
A =
\an—l,O Adn—1,1 - -- an—l,m—l)
/ ao,0 1.0 e An—1,0 \
AT ao,1 a1 a1 m—1

\ao,m—1 al1,m—1 .- an—l,m—l)

Figures from
https://www.mathsisfun.com/

Addition

* Matrices can be added to themselves iff they have the same
dimensions.

* A and B are both n-by-m matrices.

(ap.0 + bo,0 ap,1 + bo1 e ao,m—1 + bo,m—1 \
aio + b1,0 a1 +b11 a1m—1+b1.m—1
A+ B =
\an—Lo +bn-10 G@n-11+0bp—11 ... Gp_1m—-1-F bn—l,m—l)

Hadamard Product

* Element-wise product (like addition)

* A and B are both n-by-m matrices.

a1 a12 a13 b11
a1 aze asg | © | be
a1 ag2 ass bs;

* Multiplies with a scalar

2x40 —
5] =1

b13 aj1 b1 az bio
bas | = | a21 ba1 age by

ag1 bs1 a3 b3

a13 bis
ags bas

ass bss

Multiplication

* To multiply two matrices, the inner dimensions must be the
same.

* An n-by-m matrix can be multiplied by an m-by-k matrix
e Qutcome: n-by-k matrix

1 2 3 x78— 58
45 6 9 10| =

11 12

(1,2,3)e(7,9,11) = 1x7 + 2x9 + 3x11
= 58

30

Multiplication

1237, |7 5] _[58 64
45 6 9 10| =

11 12

(1,2, 3) ¢ (8,10, 12) = 1x8 + 2x10 + 3x12
= 64

1 237 |7 8] [58 64
4 5 6 9 10] = 1139 154

31

Multiplication

* To multiply two matrices, the inner dimensions must

be the same.
* An n-by-m matrix can be multiplied by an m-by-k matrix
_ B _
AB — C 1,1 b1.2 bl.B
] b2.2 b2.3
m — il B
G182 O
Cij = E Qi * b Nz
k=0 G3,1|93,2 o

Norm

 The norm of a vector, x, represents the Euclidean length of a vector.

Fo > —_— 2 2 2
HXH'_"‘\."X[T'*'XI- — \/x0+$1+-..+$n_1

Operations on Vectors

*u+v,u—v, ku
* Dot product: uv=u'v=<u,v>="?
* Norm: | |u] |%=<u, u>

e Geometric views
* <u,v>=||u|]| [|v]] cos()
* |<u,v>| < | |ul] [|v]]

* Q: projection of u on v direction?

Transposition

* Transposition rules
(A +B)?
(AB)*

* Sanity check: dimensions (A'B")

AT + BT
BTAT

Distributive/Commutative Law,

* A(B+C) = AB + AC

* Matrix/vector/scalar
* (A+B)(C+D) ="
* |lu-v[]| =7

e Commutative law:
* Only if inner product: <u,v> = <v,u>
e Also scalar kA = Ak

|[dentity Matrix

* Matrices are invariant under multiplication by the identity matrix.

Al = A
IA=A

e WhatifAismxn?

NumPy — a convenient module for matrix/vector

One of the reasons NumPy is so important for numerical computations in Python is
because it is designed for efficiency on large arrays of data. There are a number of
reasons for this:

o NumPy internally stores data in a contiguous block of memory, independent of
other built-in Python objects. NumPy’s library of algorithms written in the C lan-
guage can operate on this memory without any type checking or other overhead.
NumPy arrays also use much less memory than built-in Python sequences.

o NumPy operations perform complex computations on entire arrays without the
need for Python for loops.

First example

To give you an idea of the performance difference, consider a NumPy array of one
million integers, and the equivalent Python list:

In [7]: import numpy as np
In [8]: my_arr = np.arange(1000000)

In [9]: my_list = list(range(1000000))
Now let’s multiply each sequence by 2:

In [10]: %time for _ inm range(10): my_arr2 = my_arr * 2
CPU times: user 20 ms, sys: 50 ms, total: 70 ms
Wall time: 72.4 ms

In [11]: %time for _ in range(10): my_list2 = [x * 2 for x in my_list]

CPU times: user 760 ms, sys: 290 ms, total: 1.05 s

Wall time: 1.05 s
NumPy-based algorithms are generally 10 to 100 times faster (or more) than their
pure Python counterparts and use significantly less memory.

ndarray — vectors/matrices

In [12]: import numpy as np In [15]: data * 10
Out[15]:

Generate some random data array([[-2.0471, 4.7894, -5.1944],
In [13]: data = np.random.randn(2, 3) [-5.5573, 19.6578, 13.9341]])
In [14]: data In [16]: data + data
Out[14]: Out[16]:
array([[-0.2047, ©.4789, -0.5194],

[-0.5557, 1.9658, 1.3934]]) array([[-0.4094, 0.9579, -1.0389],

[-1.1115, 3.9316, 2.7868]])

ndarray — vectors/matrices

° 5 4 19 8
e 1d -- vector 2
o 2d == matrIX SCALAR :z(l,i:p\;e‘l::;r) C(():::‘p.:e ‘;‘:‘)‘” MATRIX
e 3d —tensor

e 4d -- ...
e Same dtype for all elements (diff from list)

TENSOR

Whenever you see “array, “NumPy array;” or “ndarray” in the text,
with few exceptions they all refer to the same thing: the ndarray
object.

In [17]: data.shape
Out[17]: (2, 3)

In [18]: data.dtype
Out[18]: dtype('float64")

Creation of ndarrays

e Creation from list, list of lists

In [19]

In [20]:

In [21]:
Out[21]:

: datal = [6, 7.5, 8, 0, 1]
arrl = np.array(datal)
arril
array([6. , 7.5, 8., 0., 1. 1])

* ndim, shape, dtype

In [22]: data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]
In [23]: arr2 = np.array(data2)

In [24]: arr2

out[24]:

array([[1, 2, 3, 4],
[5, 6, 7, 8]1])

In [27]:
out[27]:

In [28]:
out[28]:

arrl.dtype
dtype('float6e4d')

arr2.dtype
dtype('int64')

In [25]:
Out[25]:

In [26]:

Out[26]

arr2.ndim
2

arr2.shape
2 (2, 4)

Creation of ndarrays (cont’d)

* All zeros, all ones, identity matrix, range, random matrix

In [29]: np.zeros(10)
Out[29]: array([0., ©., 0., 0., 0., 0., 0., 0., 0., 0.])

In [30]: np.zeros((3, 6))
Out[30]:

array([[©¢., ©., 0., 0., 0., 0.],
[0., ©0., 0., 0., 0., 0.],
[6., 0., 0., 0., 0., 0.1

arange is an array-valued version of the built-in Python range function:

In [32]: np.arange(15)
out[32]: array([¢, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])

Creation of ndarrays (cont’d)

* All zeros, all ones, identity matrix, range, random matrix

In

In
Out

(129]:

(130]:
(130]:
array([[

arr =

arr

.8608,
.1198,
.3594,
.9707,
.378 ,
.3497,

np.random.randn(6, 3)

.5601,
.0635,
.1995,
.307 ,
.7539,
.0699,

.2659]
.3329]
.542]
.2863]
.3313]

. 2467]

Table 4-1. Array creation functions

array Convert input data (list, tuple, array, or other sequence type) to an ndarray either by inferring a dtype
or explicitly specifying a dtype; copies the input data by default

asarray Convert input to ndarray, but do not copy if the input is already an ndarray

arange Like the built-in range but returns an ndarray instead of a list

ones, Produce an array of all 1s with the given shape and dtype; ones_11ike takes another array and

ones_like produces a ones array of the same shape and dtype

zeros, Like ones and ones_1like but producing arrays of 0s instead

zeros_like

empty, Create new arrays by allocating new memory, but do not populate with any values like ones and

empty_like zeros

full, Produce an array of the given shape and dtype with all values set to the indicated “fill value”

full_like full_1like takes another array and produces a filled array of the same shape and dtype

eye, identity (Create asquare N X N identity matrix (1s on the diagonal and Os elsewhere)

Table 4-2. NumPy data types

Type

int8, uint8
int16, uinti1é6
int32, uint32
int64, uint64
float16
float32
float64

float128

complex64,
complex128,
complex256

bool
object

string_

unicode_

Type code Description

i1, ul Signed and unsigned 8-bit (1 byte) integer types

12, u2 Signed and unsigned 16-bit integer types

14, ud Signed and unsigned 32-bit integer types

18, u8 Signed and unsigned 64-bit integer types

f2 Half-precision floating point

f4 or f Standard single-precision floating point; compatible with C float

f8 or d Standard double-precision floating point; compatible with C double and
Python float object

f16 or g Extended-precision floating point

c8, ci16, Complex numbers represented by two 32, 64, or 128 floats, respectively

c32

? Boolean type storing True and False values

0 Python object type; a value can be any Python object

S Fixed-length ASCII string type (1 byte per character); for example, to create a

string dtype with length 10, use 'S10'

U Fixed-length Unicode type (number of bytes platform specific); same
specification semantics as string_ (e.g., 'U10")

Arithmetic

In [51]: arr = np.array([[1., 2., 3.], [4., 5., 6.]])

In [52]: arr
Out[52]:

array([[1., 2., 3.],

[4., 5., 6.]1])

In [53]: arr * arr
Out[53]:

array([[1., 4., 9.],
[16., 25., 36.]])

Element-wise multiplication
Note: not matrix multiplication

In [54]: arr - arr

Out[54]:

array([[0., 0.,
[0., 0., 0.]1])

0.1,

Arithmetic (cont’d)

In [55]: 1 / arr

Out[55]:

array([[1. , 0.5 , 0.3333],
[0.25 , 0.2 , 0.1667]])

In [56]: arr ** 0.5

Out[56]:

array([[1. , 1.4142, 1.7321],
[2. , 2.2361, 2.4495]1])

Arithmetic (cont’d)

In [57]: arr2 = np.array([[0., 4., 1.], [7., 2., 12.]])

In [58]: arr2

Out[58]:

array([[©., 4., 1.],
[7., 2., 12.1D)

In [59]: arr2 > arr
Out[59]:
array([[False, True, False],
[True, False, True]], dtype=bool)

Indexing

In [60]:

In [61]:
Out[61]:

In [62]:
Out[62]:

In [63]:
Out[63]:

In [64]:

In [65]:
Out[65]:

arr = np.arange(10)

arr

array([o, 1, 2, 3, 4, 5, 6, 7, 8, 9])

arr[5]
5

arr[5:8]

array([5, 6, 7])

arr[5:8] =

arr
array([0,

12

1,

2,

3,

4, 12, 12, 12,

g,

91)

Expression

arr[:2, 1:]

arr[2]
arr[2, :]
arr[2:, :

arr[:, :2]

arr[1, :2]
arr[1:2, :2]

fal.aaf EEJE

Shape

(2, 2)

(3,)
(3,)
(1, 3)

(3, 2)

(2,)
(1, 2)

Figure 4-2. Two-dimensional array slicing

Transposing (Stopped 10/31)

In [126]: arr = np.arange(15).reshape((3, 5))

In [127]: arr

Out[127]:

array([[o, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])

In [128]: arr.T
Out[128]:

array([[0, 5, 10],
[1, 6, 11],
[2, 7, 12],
[3, 8, 13],
[4, 9, 14]])

Universal function (ufunc)

* A function that performs element-wise operations on data in ndarrays.

In [137]: arr = np.arange(10)
In [138]: arr
Out[138]: array([©®, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [139]: np.sqrt(arr)

Out[139]:

array([0. , 1. , 1.4142, 1.7321, 2. , 2.2361, 2.4495,
2.6458, 2.8284, 3. 1)

In [140]: np.exp(arr)

Out[140]:

array([1. 5 2.7183, 7.3891, 20.0855, 54,5982,
148.4132, 403.4288, 1096.6332, 2980.958 , 8103.0839])

Binary ufunc

In [141]: x = np.random.randn(8)
In [142]: y = np.random.randn(8)

In [143]: x

Out[143]:

array([-0.0119, 1.0048, 1.3272, -0.9193, -1.5491, 0.0222, 0.7584,
-0.6605])

In [144]: vy

Out[144]:

array([0.8626, -0.01 , ©0.05 , 0.6702, 0.853 , -0.9559, -0.0235,
-2.30421)

In [145]: np.maximum(x, Vy)

Out[145]:

array([0.8626, 1.0048, 1.3272, 0.6702, 0.853 , 0.0222, 0.7584,
-0.6605])

Binary ufunc (cont’d)

In [146]:

In [147]:
Out[147]:

In [148]:

In [149]:
Out[149]:

In [150]:
Out[150]:

arr = np.random.randn(7) * 5

arr

array([-3.2623, -6.0915, -6.663 ,

5.3731,

remainder, whole part = np.modf(arr)

remainder

array([-0.2623, -0.0915, -0.663 ,

whole part
array([-3., -6., -6.,

5

°9

3

i

3

0.3731,

°9

3.6182,

0.6182,

3.45

0.45

3

3

5.0077])

0.0077])

Table 4-3. Unary ufuncs

Function Description

abs, fabs Compute the absolute value element-wise for integer, floating-point, or complex values

sqrt Compute the square root of each element (equivalentto arr ** 0.5)

square Compute the square of each element (equivalentto arr ** 2)

exp Compute the exponent e* of each element

log, logio, Natural logarithm (base e), log base 10, log base 2, and log(1 + x), respectively

log2, logilp

sign Compute the sign of each element: 1 (positive), 0 (zero), or —1 (negative)

cell Compute the ceiling of each element (i.e., the smallest integer greater than or equal to that
number)

floor Compute the floor of each element (i.e., the largest integer less than or equal to each element)

rint Round elements to the nearest integer, preserving the dtype

modf Return fractional and integral parts of array as a separate array

isnan Return boolean array indicating whether each value is NaN (Not a Number)

isfinite, isinf Return boolean array indicating whether each element is finite (non-inf, non-NaN) or infinite,
respectively

cos, cosh, sin, Regular and hyperbolic trigonometric functions
sinh, tan, tanh

arccos, arccosh, Inverse trigonometric functions
arcsin, arcsinh,
arctan, arctanh

logical_not Compute truth value of not x element-wise (equivalent to ~arr).

Table 4-4. Binary universal functions

Function

Description

add

subtract

multiply

divide, floor_divide
power

maximum, fmax
minimum, fmin

mod

copysign

Add corresponding elements in arrays
Subtract elements in second array from first array

Multiply array elements

Divide or floor divide (truncating the remainder)

Raise elements in first array to powers indicated in second array
Element-wise maximum; fmax ignores NaN

Element-wise minimum; fmin ignores NaN

Element-wise modulus (remainder of division)

Copy sign of values in second argument to values in first argument

greater, greater_equal,
less, less_equal,
equal, not_equal
logical_and,
logical_or, logical xor

Perform element-wise comparison, yielding boolean array (equivalent to infix
operators >, >=, <, <=, ==, 1=)

Compute element-wise truth value of logical operation (equivalent to infix operators
& |, %)

Matrix multiplication

In [223]: x = np.array([[1., 2., 3.1, [4., 5., 6.]1]) x.dot(y) is equivalent to np.dot(x, y):
In [224]: y = np.array([[6., 23.], [-1, 71, [8, 2]1]) In [228]: np.dot(x, V)

Out[228]:
In [225]: x array([[28., 64.],

Out[225]:

array([[1., 2., 3.1,
[4., 5., 6.1])

In [226]:
Out[226]:
array([[
[
[

In [227]:
Out[227]:
array([[

[

y

6., 23.],
1., 7.1,
8., 9.1D
x.dot(y)
28., 64.],

67., 181.11)

[67., 181.]])

Python tends to abuse the operator.

May be different from the linear algebra meaning.
Recommend to use matmul instead.

Check out details in

https://numpy.org/doc/stable/reference/generated/numpy.dot.html

https://numpy.org/doc/stable/reference/generated/numpy.dot.html

More about linear algebra

Table 4-7. Commonly used numpy.linalg functions

diag Return the diagonal (or off-diagonal) elements of a square matrix as a 1D array, or convert a 1D array into a
square matrix with zeros on the off-diagonal

dot Matrix multiplication
trace Compute the sum of the diagonal elements

det Compute the matrix determinant

elg Compute the eigenvalues and eigenvectors of a square matrix
inv Compute the inverse of a square matrix

pinv Compute the Moore-Penrose pseudo-inverse of a matrix

qr Compute the QR decomposition

svd Compute the singular value decomposition (SVD)

solve Solve the linear system Ax = b for x, where A is a square matrix
lstsq Compute the least-squares solutionto Ax = b

Pseudorandom

In [238]: samples = np.random.normal(size=(4, 4))

In [239]: samples
Out[239]:
array([[0.5732, ©0.1933, 0.4429, 1.2796],
[0.575 , 0.4339, -0.7658, -1.237],
[-0.5367, 1.8545, -0.92 , -0.1082],
[0.1525, 0.9435, -1.0953, -0.144 1])

Pseudorandom
* Motivation -- efficiency

In [240]: from random import normalvariate
In [241]: N = 1000000

In [242]: %timeit samples = [normalvariate(®, 1) for _ in range(N)]
1.77 s +- 126 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)

In [243]: %timeit np.random.normal(size=N)
61.7 ms +- 1.32 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)

Pseudorandom

* Same seed -- same randomized sequence

In [244]: np.random.seed(1234)

The data generation functions in numpy.random use a global random seed. To avoid
global state, you can use numpy.random.RandomState to create a random number

generator isolated from others:

In [245]: rng = np.random.RandomState(1234)

In [246]: rng.randn(10)

Out[246]:

array([0.4714, -1.191 , 1.4327, -0.3127, -0.7206, 0.8872, 0.8596,
-0.6365, 0.0157, -2.2427])

More about data analysis

* Pandas
e \VVisualization

Achieve Computations without Loops

* Loop is very expensive in matlab/python
* Avoid using it as much as possible
* In python:

* numpy matrix operations, list comprehension

e http://www.jesshamrick.com/2012/04/29/the-demise-of-
for-loops/

* http://codereview.stackexchange.com/questions/38580/fa

stest-way-to-iterate-over-numpy-array

64

http://www.jesshamrick.com/2012/04/29/the-demise-of-for-loops/
http://codereview.stackexchange.com/questions/38580/fastest-way-to-iterate-over-numpy-array

Code Demo: Shannon entropy computation

* Entropy: the optimal code length to encode a distribution

M F
,M F\ - N e Total=7+9+11+2+3+2=34
bk | 7 9 7/34 9/3a| * P(Gender = M, Eye Color =bk) =7/ 34
* Entropy:
gr | 11 2 11/34 234 | H(p) = - P(M,bk) log,P(M,bk) - P(F,bk) log,P(F,bk)
3/34 2/34 o
bl | 3 2) k) = Zi,j _Pl] logz Pl]

=-(7/34) log (7/34) —(9/34) log (9/34) - ...

Count Probability

The end

