
Neural Approximation of Graph Topological Features

Zuoyu Yan
Wangxuan Institute of Computer Technology

Peking University
yanzuoyu3@pku.edu.cn

Tengfei Ma
IBM T. J. Watson Research Center

tengfei.ma1@ibm.com

Liangcai Gao
Wangxuan Institute of Computer Technology

Peking University
glc@pku.edu.cn

Zhi Tang
Wangxuan Institute of Computer Technology

Peking University
tangzhi@pku.edu.cn

Yusu Wang
Halıcıoğlu Data Science Institute

University of California
yusuwang@ucsd.edu

Chao Chen∗
Department of Biomedical Informatics

Stony Brook University
chao.chen.1@stonybrook.edu

Abstract

Topological features based on persistent homology can capture high-order struc-
tural information which can then be used to augment graph neural network methods.
However, computing extended persistent homology summaries remains slow for
large and dense graphs and can be a serious bottleneck for the learning pipeline.
Inspired by recent success in neural algorithmic reasoning, we propose a novel
graph neural network to estimate extended persistence diagrams (EPDs) on graphs
efficiently. Our model is built on algorithmic insights, and benefits from better
supervision and closer alignment with the EPD computation algorithm. We val-
idate our method with convincing empirical results on approximating EPDs and
downstream graph representation learning tasks. Our method is also efficient; on
large and dense graphs, we accelerate the computation by nearly 100 times.

1 Introduction

Graph neural networks (GNNs) have been widely used in various domains with graph-structured
data [54, 34, 28, 51, 6]. Much effort has been made to understand and to improve graph representation
power [56, 38, 3, 35]. An intuitive solution is to explicitly inject high order information, such as
graph topological/structural information, into the GNN models [61, 33]. To this end, persistent
homology [18, 17], which captures topological structures (e.g., connected components and loops)
and encodes them in a summary called persistence diagram (PD), have attracted the attention of
researchers. Indeed, persistence has already been injected to machine learning pipelines for various
graph learning tasks [65, 66, 20, 4, 8, 60]. In particular, it has been found helpful to use the so-called
extended persistence diagrams (EPDs) [10], which contain richer information than the standard PDs.

Despite the usefulness of PDs and EPDs, their computation remains a bottleneck in graph learning.
In situations such as node classification [66] or link prediction [60], one has to compute EPDs on
vicinity graphs (local subgraph motifs) generated around all the nodes or all possible edges in the
input graph. This can be computationally prohibitive for large and dense graphs. Take the Amazon

∗Correspondence to Chao Chen, Yusu Wang, and Liangcai Gao

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

20
1.

12
03

2v
4

 [
cs

.L
G

]
 1

5
N

ov
 2

02
2

(a) (b) (c) (d)

Figure 1: An explanation of extended persistent homology and its computation. The height-function-
based filtration is only for illustration purposes. (a) The input graph is plotted with a given filter
function. (b) the extended persistence diagram of (a). Commonly speaking, the persistence points on
the diagonal (uncritical points) should not be plotted. We plot these points for a clearer illustration.
(c) and (d) are examples of finding the loops in the input graph.

Computers dataset [46] as an example. To compute EPDs on vicinity graphs take several seconds on
average, and there are 13381 nodes. So to compute all EPDs with a single CPU can take up to a day.
This is not surprising as, while theoretically EPD for graphs can be computed in O(n log n) time [2],
that algorithm has not been implemented, and practical algorithms for computing PD take quadratic
time in worst case [60].

These computational difficulties raise the question: can we approximate the expensive computation of
EPDs using an efficient learning-based approach? This is a challenging question due to the complex
mathematical machinery behind the original algorithm. First, the algorithm involves a reduction
algorithm of the graph incidence matrix. Each step of the algorithm is a modulo-2 addition of columns
that can involve edges and nodes far apart. Such algorithm can be hard to be approximated by a direct
application of the black-box deep neural networks.

The second challenge comes from the supervision. The output EPD is a point set with an unknown
cardinality. The distance between EPDs, called the Wasserstein distance [9, 11], involves a complex
point matching algorithm. It is nontrivial to design a deep neural network with variable output and to
support supervision via such Wassserstein distance. Previous attempts [47, 36] directly use black-box
neural networks to generate fixed-length vectorization of the PDs/EPDs and use mean squared error
or cross-entropy loss for supervision. The compromise in supervision and the lack of control make it
hard to achieve high-quality approximation of PDs/EPDs.

In this paper, we propose a novel learning approach to approximate EPDs on graphs. Unlike previous
attempts, we address the aforementioned challenges through a carefully designed learning framework
guided by several insights into the EPD computation algorithm.

In terms of model output and supervision, we observe that the computation of EPDs can be treated as
an edge-wise prediction instead of a whole-graph prediction. Each edge in the graph is paired with
another graph element (either vertex or edge), and the function values of the pair are the coordinates
of a persistence point in the EPD. This observation allows us to compute EPDs by predicting the
paired element for every edge of the graph. The Wasserstein distance can be naturally decomposed
into supervision loss for each edge. This element-wise supervision can significantly improve learning
efficiency compared with previous solutions, which treat PDs/EPDs as a whole-graph representation
and have to use whole-graph representation pooling.

Another concern is whether and how a deep neural network can approximate the sophisticated EPD
algorithm. To this end, we redesign the algorithm so that it is better aligned with algorithms that
are known to be learnable by neural networks. Recall we observe that computing EPDs can be
decomposed into finding pairing for each edge. We show that the decomposition is not only at the
output level, but also at the algorithm level. The complex standard EPD computation algorithm
can indeed be decomposed into independent pairing problems, each of which can be solved exactly
using a classic Union-Find algorithm [12]. To this end, we draw inspiration from recent observations
that neural networks can imitate certain categories of sequential algorithms on graphs [52, 55]. We

2

propose a carefully designed graph neural network with specific message passing and aggregation
mechanism to imitate the Union-Find algorithm.

Decomposing the algorithm into Union-Find subroutines and approximating them with a customized
GNN provide better alignment between our neural network and the EPD algorithm. A better
alignment can lead to better performance [57]. Empirically, we validate our method by quantifying
its approximation quality of the EPDs. On two downstream graph learning tasks, node classification
and link prediction, we also show that our neural approximations are as effective as the original EPDs.
Meanwhile, on large and dense graphs, our method is much faster than direct computation. In other
words, the approximated EPDs do not lose accuracy and learning power, but can be computed much
more efficiently. Finally, we observe that our model can be potentially transferred to unseen graphs,
perhaps due to the close imitation of the Union-Find subroutine. This is encouraging as we may
generalize topological computation to various challenging real-world graphs without much additional
effort.

In summary, we propose an effective learning approach to approximate EPDs with better supervision
and better transparency. The technical contributions are as follows.

• We reformulate the EPD computation as an edge-wise prediction problem, allowing better
supervision and more efficient representation learning. We show that the EPD computation
can be decomposed into independent pairing problems, each of which can be solved by the
Union-Find algorithm.

• Inspired by recent neural algorithm approximation works [52, 55], we design a novel graph
neural network architecture to learn the Union-Find algorithm. The closer algorithmic
alignment ensures high approximation quality and transferability.

2 Background: Extended Persistent Homology

We briefly introduce extended persistent homology and refer the readers to [10, 17] for more details.

Ordinary Persistent Homology. Persistent homology captures 0-dimensional (connected com-
ponents), 1-dimensional (loops) topological structures, as well as high-dimensional analogs, and
measures their saliency via a scalar function called filter function. Here we will only describe it for
the graph setting. Given a input graph G = (V,E), with node set V and edge set E, we call all the
nodes and edges simplices. Denote by X = V ∪E the set of all simplices. We define a filter function
on all simpices, f : X → R. In the typical sublevel-set setting, f is induced by a node-valued
function (e.g., node degrees), and further defined on edges as f(uv) = max(f(u), f(v)).

Denote by Xa the sublevel set of X , consisting of simplices whose filter function values ≤ a,
Xa = {x ∈ X|f(x) ≤ a}. As the threshold value a increases from −∞ to∞, we obtain a sequence
of growing spaces, called an ascending filtration of X: ∅ = X−∞ ⊂ ... ⊂ X∞ = X. As Xa

increases from ∅ to X , new topological structures gradually appear (born) and disappear (die). For
instance, the blue square persistence point at (t2, t3) in Figure 1 (b) indicates that the connected
component u2 appears at Xt2 and is merged with the whole connected component at Xt3 .

Applying the homology functor to the filtration, we can more precisely quantify the birth and death
of topological features (as captured by homology groups) throughout the filtration, and the output
is the so-called persistence diagram (PD), which is a planar multiset of points, each of which (b, d)
corresponds to the birth and death time of some homological feature (i.e., components, loops, and
their higher dimensional analogs). The lifetime |d− b| is called the persistence of this feature and
intuitively measures its importance w.r.t. the input filtration.

Extended Persistent Homology. In the ordinary persistent homology, topology of the domain (e.g.,
the graph) will be created at some time (has a birth time), but never dies (i.e., with death time
being equal to +∞). We call such topological features essential features. In the context of graphs,
the importance of 1D essential features, corresponding to independent loops, are not captured via
the ordinary persistence. To this end, an extended persistence module is introduced in [10]: ∅ =
H(X−∞) → · · ·H(Xa) → · · ·H(X) = H(X,X∞) → · · · → H(X,Xa) → · · · → H(X,X−∞),
where Xa = {x ∈ X|f(x) ≥ a} is a superlevel set of X at value a. We say that the second part
H(X,X∞)→ · · · → H(X,Xa)→ · · · → H(X,X−∞) is induced by a descending filtration. If we
inspect the persistence diagram induced by this extended sequence, as H(X,X−∞) is trivial, all the
loop features created will also be killed in the end, and thus captured by persistence points whose

3

birth happens in the ascending filtration and death happens in the descending filtration. In what
follows, we abuse the notation slightly and use 1D EPD to refer to only such persistence points (i.e.,
born in ascending portion and death in descending portion) in the persistence diagram induced by the
extended module2. We use 0D PD to refer to the standard ordinary 0D persistence diagram induced
by the ascending sequence. Our goal is to compute/approximate the union of 0D PD and 1D EPD.

Specifically, in the graph setting, at the end of the ascending filtration, some edges, which are the
so-called negative edges (as they kill homological features), are paired with the vertices. These
correspond to points in the 0D PD, capturing the birth and death of connected components in the
ascending filtration. Those unpaired edges, called positive edges, will create independent loops
(1D homology for graphs) and remain unpaired after the ascending filtration. The number of such
unpaired edges equals to the 1st Betti number β1 (rank of the 1st homology group). These edges will
then be paired in the descending part of the persistence module and their birth-depth times give rise
to 1D EPD. An example is given in Figure 1(b). Note that since our domain is a graph, β1 equals
the number of independent loops, which also equals to β1 = |E| − |V |+ 1 for a connected graph.
Hence we also say that 1D EPD captures the birth and death of independent loop features. The birth
and death times of the loop feature correspond to the threshold value a’s when these events happen.
In general, the death time for such loop feature is smaller than the birth time. For example, the red
triangle persistence point in Figure 1 (b) denotes that the red cycle in Figure 1 (a) appears at Xt5 in
the ascending filtration and appears again at Xt1 in the descending filtration.

Finally, PDs live in an infinite-dimensional space equipped with an appropriate metric structure,
such as the so-called p-th Wasserstein distance [11] or the bottleneck distance [9]. They have been
combined with various deep learning methods including kernel machines [43, 31, 5], convolutional
neural networks [22, 26, 53, 67], transformers [63], connectivity loss [7, 21], and GNNs [66, 8, 60,
65, 20, 4]. During learning, there have been many works in the literature to vectorize persistence
diagrams for downstream analysis. Among these works a popular choice is the persistence image [1].

3 Algorithm Revision: Decomposing EPD into Edge-Wise Paring
Predictions

In this section, we provide algorithmic insights into how the expensive and complex computation of
EPDs can be decomposed into pairing problems for edges. And each pairing problem can be solved
exactly using a Union-Find algorithm. The benefit is two-folds. First, the decomposition makes
it possible to train the neural network through edge-wise supervision.This allows us to adopt the
popular and effective edge-prediction GNN for the goal. Second, we observe the similarity between
the Union-Find and sequential algorithms which are known to be imitable by neural networks. This
gives us the opportunity to design a special graph neural network to imitate the algorithm accurately,
and to approximate EPDs accurately.

Decompose the EPD Computation into Pairing Computations. Recall that our goal is to compute
the 0D PDs and 1D EPDs PD0 and PD1. The reason for not estimating 0D EPDs (or not including
the global max/min pair that corresponds to the whole connected component) is that (1) the global
max/min value is easy to obtain, and does not need an extra prediction; (2) in our setting, the global
max/min pair will not be paired with any edge in the ascending filtration. In the later section, the
estimation of EPDs denote the estimation of PD0 and PD1.

We observe that on these diagrams, each point corresponds to a unique pairing of graph elements
(vertex-edge pair for PD0, edge-edge pair for PD1). Each pair of elements are essentially the
“creator” and “destroyer” of the corresponding topological feature during the filtration. And their
filtration values are the birth and death times of the topological feature. For example, the persistence
point located at (t2, t3) in Figure 1 (b) denotes that the edge u2u3 is paired with u2. We consider the
following "unique pairing" for all edges in the graph: Consider each edge in the ascending filtration:
if the edge is a destroyer in the ascending filtration, it will be paired with a vertex. Otherwise, this
edge e is a creator in the ascending filtration and will be paired during the descending filtration with
another edge e′. We note that this is not in conflict with the fact that the PDs/EPDs are often sparse.
Many pairings are local and only pair adjacent elements. They correspond to zero-persistence points
living in the diagonal of the diagrams.

2We note that in standard terminology, extended persistence diagram will also contain persistent points born
and destroyed both in the descending sequence.

4

Algorithm 1 Sequential algorithm

1: Input: graph G = (V,E), filter function f .
2: Initialise-Nodes(V, f)
3: Q = Sort-Queue(V)
4: while Q is not empty do

5: u = Q.pop-min()
6: for v ∈ G.neighbors(u) do
7: Relax-Edge(u, v, f)
8: end for
9: end while

Algorithm 2 Computation of EPD

1: Input: filter function f , input graph G =
(V,E)

2: V,E = sorted(V,E, f)
3: PD0 = Union-Find(V,E, f), PD1 = {}
4: for i ∈ V do
5: Ci = {Cij |(i, j) ∈ E, f(j) > f(i)},

Ei = E
6: for Cij ∈ Ci do

7: f(Cij) = f(i), Ei = Ei − {(i, j)} +
{(Cij , j)}

8: end for
9: PDi

1 = Union-Find-step(V + Ci −
{i}, Ei, f, Ci)

10: PD1+ = PDi
1

11: end for
12: Output: PD0, PD1

Algorithm 3 Union-Find-step (Sequential)

1: Input: V , E, f , Ci

2: PDi
1 = {}

3: for v ∈ V do
4: v.value = f(v), v.root = v
5: end for
6: Q = Sort(V), Q = Q − {v|f(v) < f(i)},
G = {Q,EQ}, where EQ = E ∪Q2.

7: while Q is not empty do
8: u = Q.pop-min()
9: for v ∈ G.neighbors(u) do

10:
11: pu, pv = Find-Root(u),Find-Root(v)
12: if pu 6= pv then
13: s = argmin(pu.value, pv.value)

14: l = argmax(pu.value, pv.value)
15: l.root = s
16: if pu ∈ Ci and pv ∈ Ci then
17: PDi

1 + {(u.value, l.value)}
18: end if
19: end if
20: end for
21: end while
22: Function: Find-Root(u)
23: pu = u
24: while pu 6= pu.root do
25: pu.root = (pu.root).root, pu = pu.root
26: end while
27: Return: pu

This pairing view gives us the opportunity to transform the computation of EPDs into a pairing
prediction problem: for every edge in the graph, we predict its pairing element. This will be the
foundation of our design of the GNN in Sec. 4. Meanwhile, we observe that the decomposition is
not only at the output level. The original algorithm of EPD, a sequential modulo-2 matrix reduction
algorithm, can indeed be rewritten into a set of independent algorithm subroutines, each for the
computation of one pairing. Each subroutine is a Union-Find algorithm. This new decomposed
EPD algorithm has not been reported before, although the idea follows from existing work [2]. For
completeness, we will provide a proof of correctness of the algorithm.

Description of Algorithm 2. The pseudocode for 1D EPD computation is shown in Algorithm 2.
We leave the algorithm for 0D PD to the supplementary material3. For simplicity of presentation, we
assume that all vertices have distinct function values f : V → R4. Therefore finding the persistence
value equals to finding the pairing. To compute the EPD, we traverse all nodes in the vertex set and
find their extended persistence pairing. Combining the persistence pair from all nodes, we can obtain
the final EPD. The algorithm complexity analysis is provided in the supplementary material.

Finding persistence pairing for nodes. For node ui ∈ V , we can call Algorithm 3 to identify the
corresponding persistence pair. In particular, the algorithm first sorts the graph elements according
to an input scalar function, then does the edge operation by finding the roots of the corresponding
nodes and merging these nodes. See Figure 1(c) for a simple illustration. For node u1, there are three
upper edges: u1u3, u1u4, and u1u6. We put each such edge uiuj in a different component Cij , – we
call this upper-edge splitting operation – and start to sweep the graph in increasing values starting
at f(ui). Then, the first time any two such components merge will give rise to a new persistence

3The 0D algorithm needs a single run of Union-Find [17, 15], and is very similar to Algorithm 3 which is a
subroutine used by Algorithm 2.

4We can add jitter to the original filter function. The output EPDs will only have minor changes [9]

5

Figure 2: The basic framework.

point in the 1D EPD. For instance, C14 and C13 first merge at u4, and this will give rise to the brown
loop in Figure 1(a) with (t4, t1) as its persistence point. While in Figure 1 (d), the two connected
components, C23 and C25 (originated from u2) will not be united. Therefore, node u2 will not lead
to any persistence point in the EPD.

Correctness. The idea behind Algorithm 2 to compute the extended pairing for essential edges
appears to be folklore. For completeness, we provide a proof of its correctness (stated in Theorem 3.1).
We provide a sketch of the proof here, leaving the complete proof to the supplementary material.

Theorem 3.1. Algorithm 2 outputs the same 1D EPDs as the standard EPD computation algorithm.

Proof sketch. To compute the 1D EPDs, we simply need to find the pairing partner for all edges.
Therefore, to prove that the two algorithms output the same 1D EPDs, we need to prove that the
output pairing partners are the same (or share the same filter value). We prove this by showing that
both the standard EPD computation algorithm and Algorithm 2 find the “thinnest pair", i.e., the paired
saddle points are with the minimum distance in terms of filter value, for all edges.

Neural Approximation of Union-Find. In the previous paragraph, we showed that the computation
of 1D EPDs can be decomposed into the parallel execution of Union-Find algorithms, which share a
similar sequential behavior. This gives us the opportunity to approximate these Union-Find algorithms
well, and consequently approximate EPDs well.

Approximating algorithms with neural networks is a very active research direction [62, 27, 30, 42, 44,
58]. Within the context of graph, GNNs have been proposed to approximate parallel algorithms (e.g.,
Breadth-First-Search) and sequential algorithms (e.g., Dijkstra) [52, 50, 55]. Particularly relevant
to us is the success in approximating the category of sequential algorithms such as Dijkstra. These
sequential algorithms, as generally defined in Algorithm 1, sort graph elements (vertices and edges)
according to certain function, and perform algorithmic operations according to the order. As described
in previous paragraphs, the Union-Find algorithm also contains these steps, and can be expressed in a
sequential-like form (Algorithm 3). Therefore we propose a framework to simulate the algorithm.

4 A Graph Neural Network for EPD Approximation

Previous section establishes the algorithm foundation by showing that we can decompose EPD
computation into edge pairing prediction problems, each of which can be solved using a Union-Find
algorithm. Based on such algorithmic insights, we next introduce our neural network architecture to
approximate the EPDs on graphs. Our main contributions are: (1) we transform the EPD computation
into an edge-wise prediction problem, and solve it using a GNN framework, inspired by the GNN for
link prediction; (2) we design a new backbone GNN model PDGNN to approximate the Union-Find
algorithm, with specially designed pooling and message passing operations.

4.1 EPD computation as a edge-wise prediction problem
We have established that computing PD0 and PD1 can be reduced into finding the pairing partners for
all edges. We transfer the problem into an edge-wise prediction problem. We predict the persistence
pairing for all edges. This is very similar to a standard link prediction problem [6, 60], in which one
predicts for each node pair of interest whether it is a real edge of the graph or not.

6

Inspired by standard link-prediction GNN architectures [6, 60], we propose our model (see Figure 2)
as follows. (1) For an input graph G = (V,E) and a filter function f , we first obtain the initial filter
value for all the nodes: X = f(V) ∈ R|V |∗1, and then use a specially designed GNN model which
later we call PDGNN G to obtain the node embedding for all these vertices: H = G(X) ∈ R|V |∗dH .
(2) Subsequently, a MLP (Multi-layer perceptron) W is applied to the node embeddings to obtain a
two dimensional output for each edge (u, v) ∈ E, corresponding to its persistence pairing. Formally,
we use PPuv = W ([hu

⊕
hv]) ∈ R2 as the persistence pair. Here, hu and hv denote the node

embedding for node u and v, and
⊕

represents the concatenation of vectors.

In Algorithm 2, the Union-Find-step should be implemented on all edges to obtain 1D EPDs. Hence
ideally we would need a large GNN model with node features proportional to the graph size so as to
simulate all these Union-find-steps in parallel simultaneously. However this would be expensive in
practice. On the other hand, there are many overlapping or similar computational steps between the
Union-Find-step procedures on different vertices. Hence in practice, we only use bounded-size node
features.

4.2 PDGNN
In this section, we explain how to design the backbone GNN to approximate the Union-Find algorithm.
Note the Union-Find is similar to known sequential algorithms but with a few exceptions. We design
specific pooling and message passing operations to imitate these special changes. These design
choices will be shown to be necessary in the experiment section.

Recall a typical GNN learns the node embedding via an iterative aggregation of local graph neighbors.
Following [56], we write the k-th iteration (the k-th GNN layer) as:

hku = AGGk({MSGk(hk−1v), v ∈ N(u)}, hk−1u) (1)

where hku is the node features for node u after k-th iterations, and N(u) is the neighborhood of node
u. In our setting, h0u = xu is initialized to be the filter value of node u. Different GNNs have different
MSG and AGG functions, e.g., in GIN [56], the message function MSG is a MLP followed by an
activation function, and the aggregation function AGG is a sum aggregation function.

We now describe our specially designed GNN, called PDGNN (Persistence Diagram Graph Neural
Network). Compared with the Sequential algorithms (Algorithm 1) [55], our Union-Find algorithm
(Algorithm 3) differs in: (1) the Find-Root algorithm which needs to return the minimum of the
component, (2) additional edge operations such as upper-edge splitting. To handle these special
algorithmic needs, our PDGNN modifies standard GNNs with the following modules.

A new aggregation due to the Find-Root function. Finding the minimum intuitively suggests using
a combination of several local min-aggregations. Considering that the sum aggregation can bring the
best expressiveness to GNNs [56], we implement the root-finding process by a concatenation of sum
aggregation and min aggregation as our aggregation function. To be specific:

AGGk(.) = SUM(.)
⊕

MIN(.) (2)

Improved edge operations. As shown in [52, 55], classic GNNs are not effective in “executing”
Relax-Edge subroutines. Furthermore, in Algorithm 2, we also need the upper-edge splitting operation
for each vertex. In other words, the information of the separated components Cij are formed by the
information from both nodes ui and uj . To this end, we use edge features and attention to provide
bias using edges. Specifically, we propose the following message function in the k-th iteration:

MSGk(hk−1v) = σk[αk
uv(h

k−1
u

⊕
hk−1v)W k] (3)

where σk is an activation function, W k is a MLP module, and αk
uv is the edge weight for uv. We

adopt PRELU as our activation function, and the edge weight proposed in [51] as our edge weight.

Training PDGNN. We use the 2-Wasserstein distance between the predicted diagram and the ground
truth EPD as the loss function. Through optimal matching, the gradient is passed to each predicted
persistence pair. Since we have established the one-to-one correspondence between pairs and edges,
the gradient is then passed to the corresponding edge, and contributes to the representation learning.

7

Table 1: Approximation error on different vicinity graphs
Dataset Cora Citeseer PubMed Photo Computers
Evaluation W2 PIE W2 PIE W2 PIE W2 PIE W2 PIE

GIN_PI — 5.03e-1 — 2.17e-1 — 4.08e-1 — 5.53 — 2.70
GAT_PI — 1.43e-1 — 1.95e-1 — 1.60 — 20.98 — 44.50

GAT 0.655 2.46e-2 0.431 4.04e-2 0.697 3.5e-1 1.116 1.09 1.145 2.21
GAT (+MIN) 0.579 1.53e-2 0.344 1.02e-2 0.482 4.60e-2 0.820 1.35 0.834 0.64
PDGNN (w/o ew) 0.692 2.77e-2 0.397 2.24e-2 0.666 9.01e-2 2.375 6.47 18.63 27.35

PDGNN 0.241 4.75e-4 0.183 4.43e-4 0.256 8.95e-4 0.224 4.33e-3 0.220 6.20e-3

Table 2: Classification accuracy on various node classification benchmarks
Method Cora Citeseer PubMed Computers Photo CS Physics

GCN 81.5±0.5 70.9±0.5 79.0±0.3 82.6±2.4 91.2±1.2 91.1±0.5 92.8±1.0
GAT 83.0±0.7 72.5±0.7 79.0±0.3 78.0±19.0 85.1±20.3 90.5±0.6 92.5±0.9
HGCN 78.0±1.0 68.0±0.6 76.5±0.6 82.1±0.0 90.5±0.0 90.5 ± 0.0 91.3±0.0

PEGN (True Diagram) 82.7±0.4 71.9±0.5 79.4±0.7 86.6±0.6 92.7±0.4 93.3±0.3 94.3±0.1

PEGN (GIN_PI) 81.8±0.1 65.7±2.1 77.7±0.9 82.4±0.5 88.3±0.7 92.6±0.3 93.7±0.5
PEGN (PDGNN) 82.0±0.5 70.8±0.5 78.7±0.6 86.7±0.9 92.2±0.2 93.2±0.2 94.2±0.2

5 Experiments
In this section, we thoroughly evaluate the proposed model from 3 different perspectives. In Sec-
tion 5.1, we evaluate the approximation error between the predicted diagram and the original diagram
and show that the prediction is very close to the ground truth. Even with a small approximation error,
we still need to know how much does the error influence downstream tasks. Therefore, in Section 5.2,
we evaluate the learning power of the predicted diagrams through 2 downstream graph representation
learning tasks: node classification and link prediction. We observe that the model using the predicted
diagrams performs comparably with the model using the ground truth diagrams. In Section 5.3, we
evaluate the efficiency of the proposed algorithm. Experiments demonstrate that the proposed method
is much faster than the original algorithm, especially on large and dense graphs. Source code is
available at https://github.com/pkuyzy/TLC-GNN.

Datasets. To compute EPDs, we need to set the input graphs and the filter functions. Existing
state-of-the-art models on node classification [66] and link prediction [60] mainly focus on the local
topological information of the target node(s). Following their settings, for a given graph G = (V,E),
we extract the k-hop neighborhoods of all the vertices, and extract |V | vicinity graphs. In our
experiments, k is set to 1 or 2 (details are provided in the supplementary material).

In terms of filter functions, we use Ollivier-Ricci curvature [40], heat kernel signature with two
temprature values [48, 24] and the node degree5. For an input vicinity graph, we compute 4 EPDs
based on the 4 filter functions, and then vectorize them to get 4 peristence images [1]. Therefore, we
can get 4|V | EPDs in total. The input graphs include (1) citation networks including Cora, Citeseer,
and PubMed [45]; (2) Amazon shopping datasets including Photo and Computers [46]; (3) coauthor
datasets including CS and Physics [46]. Details are available in the supplementary material.

5Following the settings in [66, 60], we adopt the Ollivier-Ricci curvature as the graph metric, and the distance
to target node(s) as the filter function; Following the settings in [4], we set the temparature t = 10 and 0.1 and
adopt these two kernel functions as the filter functions; Node degree is used as the initial filter function in [20].

Table 3: AUC-ROC score on various link prediction benchmarks
Method Cora Citeseer PubMed Photo Computers

GCN 90.5± 0.2 82.6±1.9 89.6±3.7 91.8±0.0 87.8±0.0
GAT 72.8± 0.2 74.8±1.5 80.3±0.0 92.9±0.3 86.4±0.0
HGCN 93.8±0.1 96.6±0.1 96.3±0.0* 95.4±0.0 93.6±0.0
P-GNN 74.1±2.4 73.9±2.6 79.6±0.5 90.9±0.7 88.3±1.0
SEAL 91.3±5.7 89.8±2.3 92.4±1.2 97.8±1.3 96.8±1.5

TLC-GNN (True Diagram) 94.9±0.4 95.1± 0.7 97.0±0.1 98.2±0.1 97.9±0.1
TLC-GNN (GIN_PI) 93.5±0.2 93.3±0.6 96.3 ± 0.2 95.8± 1.0 96.2±0.3
TLC-GNN (PDGNN) 95.0±0.3 95.6±0.4 97.0±0.1 98.4±0.6 98.2±0.3

8

https://github.com/pkuyzy/TLC-GNN

Table 4: Time evaluation on different datasets (seconds)
Dataset Cora Citeseer PubMed Photo Computers CS Physics

Avg. N/E 38/103 16/43 61/190 797/16042 1879/47477 97/431 193/1315
Fast [60] 0.95 0.39 2.15 362.60 1195.66 5.72 24.14
Gudhi [49] 0.44 0.21 1.00 583.55 8585.50 3.00 26.58
Ours 5.21 4.72 4.78 6.67 7.32 5.18 5.42

5.1 Approximation Quality
In this section, we evaluate the approximation error between the prediction and the original EPDs.

Evaluation metrics. Recall that the input of our model is a graph and a filter function, and the output
is the predicted EPD. After obtaining the predicted EPD, we vectorize it with persistence image [1]
and evaluate (1) the 2-Wasserstein (W2) distance between the predicted diagram and the ground truth
EPD; (2) the total square error between the predicted persistence image and the ground truth image
(persistence image error, denoted as PIE). Considering that our aim is to estimate EPDs on graphs
rather than roughly approximating persistence images, we use the W2 distance as the training loss,
while the PIE is only used as an evaluation metric. Given an input graph (e.g., Cora, Citeseer, etc.)
and a filter function, we extract the k-hop neighborhoods of all the vertices and separate these vicinity
graphs randomly into 80%/20% as training/test sets. We report the mean W2 distance between
diagrams and PIE on different vicinity graphs and 4 different filter functions.

Baseline settings. PDGNN denotes our proposed method, that is, the GNN framework with the
proposed AGG function and MSG function. Its strategy is to first predict the EPD, and then convert
it to the persistence image. To show its superiority, we compare with the strategy from [47, 36], i.e.,
directly approximate the persistence image of the input graph, as a baseline strategy. GIN_PI and
GAT_PI denote the baseline strategy with GIN [56] and GAT [51] as the backbone GNNs.

To show the effectiveness of the modules proposed in Section 4, we add other baselines with our
proposed strategy. GAT denotes GAT as the backbone GNN. GAT (+MIN) denotes GAT with the
new AGG function. Compared with PDGNN, it exploits the original node feature rather than the
new edge feature in the MSG function. PDGNN (w/o ew) denotes PDGNN without edge weight.
Further experimental settings can be found in the supplementary material.

Results. Table 1 reports the approximation error, we observe that PDGNN outperforms all the baseline
methods among all the datasets. The comparison between GAT and GAT_PI shows the benefit of
predicting EPDs instead of predicting the persistence image. Comparing GAT and GAT (+MIN), we
observe the advantage of the new AGG function, which shows the necessity of using min aggregation
to approximate the Find-Root algorithm; Comparing GAT (+MIN) and PDGNN, we observe the
effectiveness of using the new MSG function to help the model capture information of the separated
connected components. The comparison between PDGNN (w/o ew) and PDGNN shows that edge
weights help the model focus on the individual Relax-Edge sub-algorithm operated on every edge.

5.2 Downstream Tasks
In this section, we evaluate the performance of the predicted diagrams on 2 graph representation
learning tasks: node classification and link prediction. We replace the ground truth EPDs in state-of-
the-art models based on persistence [66, 60] with our predicted diagrams and report the results.

Baselines. We compare our method with various state-of-the-art methods. We compare with popular
GNN models including GCN [28], GAT [51] and HGCN [6]. For link prediction, we compare with
several state-of-the-art methods such as SEAL [64] and P-GNN [61]. Notice that GCN and GAT
are not originally designed for link prediction, therefore we follow the settings in [6, 60], that is, to
get the node embedding through these models, and use the Fermi-Dirac decoder [29, 41] to predict
whether there is a link between the two target nodes. In comparison with the original EPD, we
also add PEGN [66] and TLC-GNN [60] as baseline methods. Furthermore, to show the benefit
of directly predicting EPDs, we also add the baseline methods PEGN (GIN_PI) and TLC-GNN
(GIN_PI), which replace the original persistent homology feature with the output from GIN_PI.

Evaluation metrics. For node classification, our setting is the same as [28, 51, 66]. To be specific, we
train the GNNs with 20 nodes from each class and validate (resp. test) the GNN on 500 (resp. 1000)
nodes. We run the GNNs on these datasets 10 times and report the average classification accuracy

9

and standard deviation. For link prediction, our setting is the same as [6, 60]. To be precise, we
randomly split existing edges into 85/5/10% for training, validation, and test sets. An equal number
of non-existent edges are sampled as negative samples in the training process. We fix the negative
validation and test sets, and randomly select the negative training sets in every epoch. We run the
GNNs on these datasets 10 times and report the mean average area under the ROC curve (ROCAUC)
scores and the standard deviation.

Results. Table 2 and Table 3 summarize the performance of all methods on node classification and
link prediction. We observe that PEGN (PDGNN) and TLC-GNN (PDGNN) consistently perform
comparably with PEGN and TLC-GNN, showing that the EPDs approximated by PDGNN have the
same learning power as the true EPDs. Furthermore, PEGN using the approximated EPDs achieve
better or comparable performance with different SOTA methods.

We also discover that PEGN (GIN_PI) and TLC-GNN (GIN_PI) perform much inferior to the original
models using the true EPDs. It demonstrates that the large approximation error from GIN_PI lose
much of the crucial information which is preserved in PDGNN.

Transferability. One appealing feature of our method is its transferability. Training on one graph,
our algorithm can estimate EPDs well on another graph. This makes it possible to apply the
computationally expensive topological features to a wide spectrum of real-world graphs; we can
potentially apply a pre-trained model to large and dense graphs, on which direct EPD computation is
infeasible. The experiments are provided in the supplementary material.

5.3 Algorithm Efficiency

In this section, we evaluate the efficiency of our proposed model. For a fair and complete comparison,
we compare with algorithms from Gudhi [49] and from [60]. We select the first 1000 nodes from Cora,
Citeseer, PubMed, Photo, Computers, CS, Physics, and then extract their 2-hop neighborhoods. With
Ollivier-Ricci curvature as the filter function, we compute the EPDs and report the time (seconds)
used to infer these diagrams.

Results. We list the average nodes and edges of these vicinity graphs in the first line of Table 4. As
shown in Table 4, although our model is slower on small datasets like Cora or Citeseer, it is much
faster on large and dense datasets. Therefore we can simply use the original algorithm to compute
the EPDs on small graphs, and use our model to estimate EPDs on large graphs. The model can be
applied to various graph representation learning works based on persistent homology.

6 Conclusion

Inspired by recent success on neural algorithm execution, we propose a novel GNN with different
technical contributions to simulate the computation of EPDs on graphs. The network is built
on algorithmic insights, and benefits from better supervision and closer alignment with the EPD
computation algorithm. Experiments show that our method achieves satisfying approximation quality
and learning power while being significantly faster than the original algorithm on large and dense
graphs. Another strength of our method is the transferability: training on one graph, our algorithm can
still approximate EPDs well on another graph. This makes it possible to apply the computationally
expensive topological features to a wide spectrum of real-world graphs.

Acknowledgements. We thank all anonymous reviewers for their constructive feedback very much.
This work of Zuoyu Yan, Liangcai Gao, and Zhi Tang is supported by the projects of National Key
R&D Program of China (2019YFB1406303) and National Natural Science Foundation of China
(No. 61876003), which is also a research achievement of Key Laboratory of Science, Technology and
Standard in Press Industry (Key Laboratory of Intelligent Press Media Technology).

References

[1] Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman,
Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images:
A stable vector representation of persistent homology. Journal of Machine Learning Research,
18, 2017.

10

[2] Pankaj K Agarwal, Herbert Edelsbrunner, John Harer, and Yusu Wang. Extreme elevation on a
2-manifold. Discrete & Computational Geometry, 36(4):553–572, 2006.

[3] Cristian Bodnar, Fabrizio Frasca, Yu Guang Wang, Nina Otter, Guido Montufar, Pietro Liò,
and Michael M Bronstein. Weisfeiler and lehman go topological: Message passing simplicial
networks. In ICML, 2021.

[4] Mathieu Carrière, Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin Royer, and Yuhei Umeda.
Perslay: A neural network layer for persistence diagrams and new graph topological signatures.
In International Conference on Artificial Intelligence and Statistics, pages 2786–2796. PMLR,
2020.

[5] Mathieu Carriere, Marco Cuturi, and Steve Oudot. Sliced wasserstein kernel for persistence
diagrams. In International conference on machine learning, pages 664–673. PMLR, 2017.

[6] Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional
neural networks. Advances in neural information processing systems, 32:4868–4879, 2019.

[7] Chao Chen, Xiuyan Ni, Qinxun Bai, and Yusu Wang. A topological regularizer for classifiers
via persistent homology. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 2573–2582. PMLR, 2019.

[8] Yuzhou Chen, Baris Coskunuzer, and Yulia Gel. Topological relational learning on graphs.
Advances in Neural Information Processing Systems, 34, 2021.

[9] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams.
Discrete & computational geometry, 37(1):103–120, 2007.

[10] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persistence using
poincaré and lefschetz duality. Foundations of Computational Mathematics, 9(1):79–103, 2009.

[11] David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Yuriy Mileyko. Lipschitz functions
have l p-stable persistence. Foundations of computational mathematics, 10(2):127–139, 2010.

[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, 3rd Edition. MIT Press, 2009.

[13] Matija Čufar and Žiga Virk. Fast computation of persistent homology representatives with
involuted persistent homology. arXiv preprint arXiv:2105.03629, 2021.

[14] Thibault de Surrel, Felix Hensel, Mathieu Carrière, Théo Lacombe, Yuichi Ike, Hiroaki Kurihara,
Marc Glisse, and Frederic Chazal. Ripsnet: a general architecture for fast and robust estimation
of the persistent homology of point clouds. In ICLR 2022 Workshop on Geometrical and
Topological Representation Learning, 2022.

[15] Tamal K. Dey and Yusu Wang. Computational Topology for Data Analysis. Cambridge
University Press, 2022.

[16] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

[17] Herbert Edelsbrunner and John Harer. Computational topology: an introduction. American
Mathematical Soc., 2010.

[18] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. In Proceedings 41st annual symposium on foundations of computer science,
pages 454–463. IEEE, 2000.

[19] Loukas Georgiadis, Haim Kaplan, Nira Shafrir, Robert E Tarjan, and Renato F Werneck. Data
structures for mergeable trees. ACM Transactions on Algorithms (TALG), 7(2):1–30, 2011.

[20] Christoph Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, and Roland Kwitt. Graph
filtration learning. In International Conference on Machine Learning, pages 4314–4323. PMLR,
2020.

[21] Christoph Hofer, Roland Kwitt, Marc Niethammer, and Mandar Dixit. Connectivity-optimized
representation learning via persistent homology. In International Conference on Machine
Learning, pages 2751–2760. PMLR, 2019.

[22] Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl. Deep learning with topo-
logical signatures. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, pages 1633–1643, 2017.

11

[23] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social networks, 5(2):109–137, 1983.

[24] Nan Hu, Raif M Rustamov, and Leonidas Guibas. Stable and informative spectral signatures
for graph matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2305–2312, 2014.

[25] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118–22133, 2020.

[26] Xiaoling Hu, Fuxin Li, Dimitris Samaras, and Chao Chen. Topology-preserving deep image
segmentation. Advances in Neural Information Processing Systems, 32:5657–5668, 2019.

[27] Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. In Yoshua Bengio and Yann
LeCun, editors, 4th International Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[28] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

[29] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguná.
Hyperbolic geometry of complex networks. Physical Review E, 82(3):036106, 2010.

[30] Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-access machines. In
Yoshua Bengio and Yann LeCun, editors, 4th International Conference on Learning Represen-
tations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016.

[31] Genki Kusano, Yasuaki Hiraoka, and Kenji Fukumizu. Persistence weighted gaussian kernel for
topological data analysis. In International Conference on Machine Learning, pages 2004–2013.
PMLR, 2016.

[32] Panagiotis Kyriakis and Iordanis Fostiropoulos. Learning hyperbolic representations of topo-
logical features. In Proceedings of the International Conference on Learning Representations
(ICLR), 2021.

[33] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design
provably more powerful neural networks for graph representation learning. Neural Information
Processing Systems (NeurIPS), 2020.

[34] Yao Ma and Jiliang Tang. Deep learning on graphs. Cambridge University Press, 2021.
[35] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful

graph networks. In Proceedings of the 33rd International Conference on Neural Information
Processing Systems, pages 2156–2167, 2019.

[36] Guido Montufar, Nina Otter, and Yu Guang Wang. Can neural networks learn persistent
homology features? In NeurIPS 2020 Workshop on Topological Data Analysis and Beyond,
2020.

[37] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020.

[38] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
4602–4609, 2019.

[39] James R Munkres. Elements of algebraic topology. CRC press, 2018.
[40] Chien-Chun Ni, Yu-Yao Lin, Jie Gao, and Xianfeng Gu. Network alignment by discrete ollivier-

ricci flow. In International Symposium on Graph Drawing and Network Visualization, pages
447–462. Springer, 2018.

[41] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical represen-
tations. Advances in neural information processing systems, 30:6338–6347, 2017.

[42] Scott E. Reed and Nando de Freitas. Neural programmer-interpreters. In Yoshua Bengio and
Yann LeCun, editors, 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

12

[43] Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. A stable multi-scale kernel for
topological machine learning. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4741–4748, 2015.

[44] Adam Santoro, Ryan Faulkner, David Raposo, Jack Rae, Mike Chrzanowski, Theophane Weber,
Daan Wierstra, Oriol Vinyals, Razvan Pascanu, and Timothy Lillicrap. Relational recurrent
neural networks. Advances in Neural Information Processing Systems, 31:7299–7310, 2018.

[45] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[46] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

[47] Anirudh Som, Hongjun Choi, Karthikeyan Natesan Ramamurthy, Matthew P Buman, and
Pavan Turaga. Pi-net: A deep learning approach to extract topological persistence images.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, pages 834–835, 2020.

[48] Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise and provably informative multi-
scale signature based on heat diffusion. In Computer graphics forum, volume 28, pages
1383–1392. Wiley Online Library, 2009.

[49] The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 2015.
[50] Petar Veličković, Lars Buesing, Matthew Overlan, Razvan Pascanu, Oriol Vinyals, and Charles

Blundell. Pointer graph networks. Advances in Neural Information Processing Systems,
33:2232–2244, 2020.

[51] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

[52] Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural
execution of graph algorithms. In International Conference on Learning Representations, 2019.

[53] Fan Wang, Huidong Liu, Dimitris Samaras, and Chao Chen. Topogan: A topology-aware
generative adversarial network. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16, pages 118–136. Springer, 2020.

[54] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

[55] Louis-Pascal Xhonneux, Andreea-Ioana Deac, Petar Veličković, and Jian Tang. How to transfer
algorithmic reasoning knowledge to learn new algorithms? Advances in Neural Information
Processing Systems, 34, 2021.

[56] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[57] Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. What can neural networks reason about? In International Conference on Learning
Representations, 2020.

[58] Yujun Yan, Kevin Swersky, Danai Koutra, Parthasarathy Ranganathan, and Milad Hashemi.
Neural execution engines: Learning to execute subroutines. Advances in Neural Information
Processing Systems, 33, 2020.

[59] Zuoyu Yan, Tengfei Ma, and Chao Chen. Cycle representation learning for inductive relation
prediction. In International Conference on Machine Learning, 2022.

[60] Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, and Chao Chen. Link prediction with
persistent homology: An interactive view. In International Conference on Machine Learning,
pages 11659–11669. PMLR, 2021.

[61] Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In Interna-
tional Conference on Machine Learning, pages 7134–7143. PMLR, 2019.

[62] Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615,
2014.

13

[63] Sebastian Zeng, Florian Graf, Christoph Hofer, and Roland Kwitt. Topological attention for
time series forecasting. Advances in Neural Information Processing Systems, 34, 2021.

[64] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in
Neural Information Processing Systems, 31:5165–5175, 2018.

[65] Qi Zhao and Yusu Wang. Learning metrics for persistence-based summaries and applications
for graph classification. Advances in Neural Information Processing Systems, 32:9859–9870,
2019.

[66] Qi Zhao, Ze Ye, Chao Chen, and Yusu Wang. Persistence enhanced graph neural network. In
International Conference on Artificial Intelligence and Statistics, pages 2896–2906. PMLR,
2020.

[67] Songzhu Zheng, Yikai Zhang, Hubert Wagner, Mayank Goswami, and Chao Chen. Topological
detection of trojaned neural networks. Advances in Neural Information Processing Systems, 34,
2021.

[68] Chi Zhou, Zhetong Dong, and Hongwei Lin. Learning persistent homology of 3d point clouds.
Computers & Graphics, 102:269–279, 2022.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] It is discussed in the supplemen-
tary material.

(c) Did you discuss any potential negative societal impacts of your work? [No] The work
does not seem to have any negative societal impact.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] The data and
the experimental details are provided in Section 5 and the supplementary material. We
will release the code once accepted.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] It is illustrated in Section 5 in the paper and in the supplementary
material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Table 2 and Table 3 are examples.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] It is provided in the supplementary
material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] It is mentioned in the supplementary

material.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

We do not release new assets.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

14

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

A Supplementary material

In the supplementary material, we provide (1) the related work; (2) the complexity and the correctness
of the introduced algorithm; (3) the Union-Find algorithm in a sequential format; (4) additional
experimental details, including the introduction of the datasets, and the experimental settings; (5)
further experiments, including the evaluation on transferability, the influence of training samples,
experiments on other datasets, experiments on other attributes of the model and the limitation of the
paper.

A.1 Related Works

Learning with Persistent Homology. Based on the theory of algebraic topology [39], persistent
homology [18, 17] extends the classical notion of homology, and can capture the topological structures
(e.g., loops, connected components) of the input data in a robust [9] manner. It has already been
used in various deep learning domains including kernel machines [43, 31, 5], convolutional neural
networks [22, 26, 53, 67], transformers [63], connectivity loss [7, 21], and graph representation
learning [66, 8, 60, 65, 20, 4, 32]. Some following works propose persistence-inspired frameworks
on other tasks such as knowledge graph completion [59].

Neural Algorithm Execution. Many works have studied neural execution in different domains
before [62, 27, 30, 42, 44, 58]. With the rapid development of GNNs in graph representation
learning, learning graph algorithms with GNNs has attracted researchers’ attention [52, 50, 55].
These works exploit GNNs to approximate certain classes of graph algorithms, such as parallel
algorithms (e.g., Breadth-First-Search) and sequential algorithms (e.g., Dijkstra). Although the
computation of extended persistence diagrams can be written in a sequential-like form, it needs extra
steps and considerations. In our framework, we propose different modules to approximate these steps
and achieve satisfying practical performance.

Accelerating Extended Persistent Homology. In general, computing extended persistent homology
relies on the well-known matrix reduction algorithm [10]. Much effort has been made to accelerate
the computation, but it still takes matrix multiplication time [49, 15, 13]. For the specific case where
the input is a function on a graph G = (V,E), it turns out that one can compute it in O(|E| log |V |)
time [2, 19]. Nevertheless, this algorithm remains theoretical, and in practice, often a quadratic
O(|V ||E|) time algorithm is used for its simplicity [60]. Recently, some works have been proposed
to accelerate the computation in a data-driven manner [47, 36, 68, 14]. However, these works try
to estimate the persistence image [1], a coarsened topological feature rather than the persistence
diagram itself, leading to much worse performance in both approximation error and downstream
tasks. Compared with previous works, we propose a novel framework that directly predicts extended
persistence diagrams on graphs. As shown in the experiment, the proposed model has achieved a
satisfying approximation error while remaining a high efficiency as well.

A.2 Complexity and Correctness of Algorithm 2

In this section, we show the complexity and the correctness of Algorithm 2 (which is restated as
Algorithm 5 in the supplementary material.).

A.2.1 Complexity

The computational complexity of the Union-Find algorithm is O(|E|α(|E|)) [12], where α(·) is the
inverse Ackermann function. Therefore, we need O(|V ||E|α(|E|)) time to compute an 1D EPD
using Algorithm 5. Note this sequential algorithm is not necessarily the most efficient one. In practice,

15

Algorithm 4 Sequential algorithm

1: Input: graph G = (V,E), filter function f .
2: Initialise-Nodes(V, f)
3: Q = Sort-Queue(V)
4: while Q is not empty do

5: u = Q.pop-min()
6: for v ∈ G.neighbors(u) do
7: Relax-Edge(u, v, f)
8: end for
9: end while

Algorithm 5 Computation of EPD

1: Input: filter function f , input graph G =
(V,E)

2: V,E = sorted(V,E, f)
3: PD0 = Union-Find(V,E, f), PD1 = {}
4: for i ∈ V do
5: Ci = {Cij |(i, j) ∈ E, f(j) > f(i)},

Ei = E
6: for Cij ∈ Ci do

7: f(Cij) = f(i), Ei = Ei − {(i, j)} +
{(Cij , j)}

8: end for
9: PDi

1 = Union-Find-step(V + Ci −
{i}, Ei, f, Ci)

10: PD1+ = PDi
1

11: end for
12: Output: PD0, PD1

Algorithm 6 Union-Find-step (Sequential)

1: Input: V , E, f , Ci

2: PDi
1 = {}

3: for v ∈ V do
4: v.value = f(v), v.root = v
5: end for
6: Q = Sort(V), Q = Q − {v|f(v) < f(i)},
G = {Q,EQ}, where EQ = E ∪Q2.

7: while Q is not empty do
8: u = Q.pop-min()
9: for v ∈ G.neighbors(u) do

10:
11: pu, pv = Find-Root(u),Find-Root(v)
12: if pu 6= pv then
13: s = argmin(pu.value, pv.value)

14: l = argmax(pu.value, pv.value)
15: l.root = s
16: if pu ∈ Ci and pv ∈ Ci then
17: PDi

1 + {(u.value, l.value)}
18: end if
19: end if
20: end for
21: end while
22: Function: Find-Root(u)
23: pu = u
24: while pu 6= pu.root do
25: pu.root = (pu.root).root, pu = pu.root
26: end while
27: Return: pu

one may use the quadratic algorithm (O(|V ||E|)) as in [60]. We also note that although not formally
published, the best known algorithm for EPD computation is quasilinear, O(|E| log |V |), using the
data structure of mergeable trees [2, 19]. But this algorithm remains theoretical so far.

A.2.2 Correctness

Formally, we restate the theorem below (The theorem is named Theorem 3.1 in the main paper).
For a clear statement, we present the standard EPD computation algorithm in Algorithm 7. The
detailed description of Algorithm 7 is beyond the scope of the paper. We only introduce the needed
information, and refer the readers to [10, 17] for details.

Theorem A.1. Algorithm 5 outputs the same 1D EPDs as Algorithm 7.

As stated in Section 2 and Section 3 in the paper, for an edge (1-simplex) e ∈ E, it is either paired
with a vertex or an edge. In the former case, the edge, defined as a negative edge, kills a connected
component, and gives rise to a 0D persistence point. In the latter case, the edge, defined as a positive
edge (in the ascending filtration), creates a loop during the ascending filtration. The loop will
ultimately be killed by another edge during the descending filtration (defined as a positive edge in the
descending filtration). Hence the positive edge in the ascending filtration is paired with a positive
edge in the descending filtration, and gives rise to a 1D extended persistence point. For simplicity, we
will call the positive edges in the ascending filtration as ascending positive edges, and the positive
edges in the descending filtration as descending positive edges.

In other words, to compute the 1D EPDs, we can simply find the pairing partner for all positive edges.
In the following paragraphs, we show that Algorithm 5 produces the same extended persistence pair
as the standard EPD computation algorithm. We first present a definition of the “thinnest pair":

16

Thinnest pair. Given a filter function f : X → R, the pair of edges (e1, e2) with f(e1) < f(e2) is
defined as the thinnest pair if the following condition is satisfied: (1) there is a cycle C having e1
as the lowest edge, and e2 as the highest edge; (2) for any other cycle with e1 as the lowest edge,
if its highest edge e2 satisfies that f(e3) 6= f(e2), then f(e3) > f(e2). Symmetrically, among all
cycles having e2 as the highest edge, e1 is the lowest edge in a cycle such that this lowest value is the
highest possible.

Lemma A.2. For every ascending positive edge, Algorithm 5 finds its “thinnest pair".

Proof. Algorithm 5 decomposes the 1D extended persistence pair finding for all edges into pair-
finding among all nodes. In particular, for a given node u, it uses Algorithm 6 to find the pair for its
upper edges. There are two cases:

Case 1. If the upper edge is an ascending negative edge, then it will kill a connected component, and
will not influence the 1D extended persistence pairing.

Case 2. If the upper edge is an ascending positive edge, it will be paired with the loop once the loop
is created in the union-find process. The edge, called e, is the lowest edge in the loop, called C.
Recall that C is also the first loop that appears in the union-find process with e as the lowest edge.
Therefore C is guaranteed to contain the highest value which is the lowest possible. According to the
definition, this will lead to the “thinnest pair"6.

Algorithm 7 The standard EPD computation algorithm

1: Input: filter funtion f , input graph G
2: EPD = {}
3: M = build reduction matrix(f,G), where
M is a 2m ∗ 2m binary matrix.

4: for j = 1 to 2m do
5: while ∃k < j with lowM (k) = lowM (j)

do

6: add column k to column j
7: end while
8: add (f(lowM (j)), f(j)) to EPD
9: end for

10: Output: EPD

Lemma A.3. In the descending filtration of Algorithm 7, an edge e is paired if a loop C has already
appeared, with e as its lowest edge.

Proof. Every column/row of the binary matrix M shown in Algorithm 7 corresponds to a simplex
(node/edge) in the input graph G. For simplicity, we replace the index in M with the simplex
it represents in the rest of the paper. For an edge e, lowM (e) denotes its lowest row e1, with
M [e, e1] = 1. After the matrix reduction process, e and e1 will form an extended persistence pair.
It has been shown in [10, 60] that for a loop, its highest edge and lowest edge form its extended
persistence pair. In other words, e and e1 are the lowest and highest edges of the loop they form.
Assume that a loop C has already aroused with e as its lowest edge, then there are two cases for the
highest edge e1 in C:

Case 1. If there does not exist an edge e2, that appears before e1 in the descending filtration, with
lowM (e2) = e = lowM (e1), then e will be paired with e1 in Algorithm 7.

Case 2. If there exists an edge e2, that appears before e1 in the descending filtration, with lowM (e2) =
e = lowM (e1), then e will be paired with e2 or even other edges that appears earlier than e2. Among
all possibilities, e is paired before C appears in Algorithm 7.

In other words, e will be paired with e1 or before e1 in Algorithm 7.

Lemma A.4. Algorithm 7 finds the “thinnest pair" for all positive edges.

6We note that once a loop appears in the union-find process, it will consist of two different upper edges.
Considering that the two upper edges share the same filter value in the ascending filtration, the output persistence
point will not change no matter which edge is paired with the loop.

17

Figure 3: A toy example for Lemma A.4.

Proof. During the descending filtration, when an edge e = uiuj appears, there are two cases:

Case 1. e is a negative edge, and will kill a connected component. This will not influence the 1D
extended persistence pair.

Case 2. e is a positive edge, and will be paired with an ascending positive edge e1 = uaub. Assume
that e1 does not construct the “thinnest pair" with e, then there exists an edge e2 = ucud, that forms
the “thinnest pair" with e. We can observe a loop C = ua → ucud → ub, in which all edges born
earlier than e in the descending filtration, and e1 is the latest edge in the ascending filtration. A toy
example is shown in Figure 3, where e = u1u3, e1 = u4u5, e2 = u3u4, and C is the red loop. Then
according to Lemma A.3, e1 will be paired no later than C appears. In other words, it has already
been paired before e appears. Therefore, the assumption is wrong, and Algorithm 7 will find the
“thinnest pair" for all positive edges.

According to Lemma A.2 and Lemma A.4, Algorithm 5 will produce the same 1D extended persis-
tence pair as Algorithm 7. Therefore, they output the same 1D EPD.

A.3 Union-Find Algorithm

In this section, we rewrite the well-known Union-Find algorithm [12] in a sequential format. The
algorithm is listed in Algorithm 8. Therefore we can use the proposed framework to estimate PD0.

Algorithm 8 Union-Find (Sequential)

1: Input: G = (V , E), f
2: PD0 = {}
3: for v ∈ V do
4: v.value = f(v), v.root = v
5: end for
6: Q = Sort(V)
7: while Q is not empty do
8: u = Q.pop-min()
9: for v ∈ G.neighbors(u) do

10: pu, pv = Find-Root(u),Find-Root(v)
11: if pu 6= pv then
12: s/l = argmin/argmax(pu.value, pv.value)

13: l.root = s
14: PD0 + {(l.value, u.value)}
15: end if
16: end for
17: end while
18: Function: Find−Root(u)
19: pu = u
20: while pu 6= pu.root do
21: pu.root = (pu.root).root, pu = pu.root
22: end while
23: Return: pu

18

Table 5: Statistics of the node classification datasets
Dataset Classes Nodes Edges Features Avg degree

Cora 7 2708 5429 1433 2.00
Citeseer 6 3327 4732 3703 1.42
PubMed 3 19717 44338 500 2.25
CS 15 18333 100227 6805 5.47
Physics 5 34493 282455 8415 8.19
Computers 10 13381 259159 767 19.37
Photo 8 7487 126530 745 16.90

A.4 Experimental details

A.4.1 Datasets.

In this paper, we exploit real-world datasets including:

1. Citation networks: Cora, Citeseer, and PubMed [45] are standard citation networks where
nodes denote scientific documents and edges denote citation links.

2. Amazon shopping records: In Photo and Computers [46], nodes represent goods, edges
represent that two goods are frequently brought together, and the node features are bag-of-
words vectors.

3. Coauthor datasets: In CS and Physics [46], nodes denote authors and edges denote that the
two authors co-author a paper.

The detailed statistics are available in Table 5.

A.4.2 Experimental Details

In this section, we mainly present the experimental settings on neural estimation, as for the setting in
downstream graph representation learning tasks, we are consistent with [66, 60].

Following the settings in [66, 60], we extract 2-hop neighborhoods of all the nodes in Cora, Citeseer,
PubMed and 1-hop neighborhoods of all the nodes in Photo, Computers, Physics, and CS. In the
training process, we only adopt the W2 distance between the predicted diagram and the ground truth
diagram as the loss function, while the PIE between the predicted persistence image and the ground
truth persistence image only serves as an evaluation metric.

We adopt Adam as the optimizer with the learning rate set to 0.002 and weight decay set to 0.01. We
build a 4-layer GNN framework with dropout set to 0. In the training process, we set the batch size to
10, and the training epoch to 20. In this paper, we also exploit a 2-layer MLP to transform the node
embedding obtained by the GNN to the persistence points on edges. In the framework, PRELU is
adopted as the activation function, the dimension of hidden layers is set to 32, and the dimension of
the output persistence image is 25. All the experiments are implemented with two Intel Xeon Gold
5128 processors,192GB RAM, and 10 NVIDIA 2080TI graphics cards.

Notice that in the normal computation of Wasserstein distance between PDs, the persistence points can
be paired to the diagonal or the persistence points in the other diagram. However, in the experiments,
we observe that with this loss function as the supervision, the model may converge to local minima,
e.g., all the predicted persistence points are paired to diagonal. Therefore, the predicted points all
converge to the diagonal and contain no topological information. To avoid such situations, we force
the predicted points to pair with the persistence points in the ground truth diagram rather than the
diagonal in the training stage. In the reference stage, we report the normal W2 distance between
persistence diagrams, that is, to let the predicted points pair with the diagonal.

A.4.3 About the assets we used

Our model is experimented on benchmarks from [37, 25, 16, 45, 46] provided under MIT license.

19

Table 6: Transferability in terms of different graph structures (W2 distance.)

Pre-train Cora Citeseer PubMed Photo Computers

Pre-train 0.392 0.279 0.444 0.379 0.404
Fine-tune 0.348 0.259 0.360 0.380 0.381
Standard 0.354 0.267 0.344 0.379 0.377

Table 7: Influence of training samples on PDGNN

Dataset Cora Citeseer PubMed
Proportion W2 PIE NCA W2 PIE NCA W2 PIE NCA

5% 0.391 2.51e-3 81.3±0.6 0.273 3.12e-3 70.0±0.7 0.330 4.35e-3 78.0±0.4
10% 0.358 1.88e-3 81.6±0.7 0.231 3.01e-3 70.5±0.5 0.300 2.36e-3 78.5±0.4
20% 0.318 6.99e-4 81.8±0.8 0.227 1.63e-3 70.6±0.5 0.278 1.03e-3 78.3±0.3
40% 0.286 9.79e-4 81.6±0.6 0.208 9.98e-4 70.9±0.6 0.255 1.34e-3 78.8±0.5
80% 0.241 4.75e-4 82.0±0.5 0.183 4.43e-4 70.8±0.5 0.256 8.95e-4 78.7±0.6

A.5 Additional Experiments

A.5.1 Experiments on transferability

In this section, we design experiments to evaluate the transferability of PDGNN in terms of different
graph structures. Our aim is to evaluate whether the pre-trained model can estimate EPDs on totally
unseen graphs. Therefore, we evaluate the models pre-trained on Photo on other datasets, and report
the W2 distance between the predicted diagrams and ground truth EPDs. Notice that we only use
Ollivier-Ricci curvature [40] as the filter function. The results are shown in Table 6.

In Table 6, “Pre-train" is to directly predict the EPDs with the pre-trained model, and “Fine-tune" is
to fine-tune an epoch on the new datasets, and then predict the EPDs. As shown in Table 6, directly
predicting the EPDs with the pre-trained model perform comparably with the standard settings among
datasets. We also observe that with only a one-epoch fine-tuning, the pre-trained model can achieve
almost an equal performance compared with the standard setting. It justifies the fine transferability of
PDGNN. Therefore, in a totally new environment, instead of training the uninitialized models for
many epochs, we can simply fine-tune or even directly use the pre-trained model to estimate EPDs on
new graph structures.

A.5.2 Evaluation on the influence of training samples

In this section, we evaluate the influence of training samples on PDGNN. We aim to show that the
model can reach an acceptable performance with only a small number of training samples.

Recall that for a given graph, we extract the k-hop neighborhoods of all the nodes and randomly select
80% of these vicinity graphs to train PDGNN. For a thorough evaluation, we train PDGNN with
5/10/20/40% vicinity graphs in this experiment and report the W2 distance of persistence diagrams,
the PIE of persistence images, and the node classification accuracy (NCA) in Table 7. We also
visualize the influence in Figure 4 and Figure 5.

As shown in Figure 4, the training error tends to converge as the training samples gradually increase.
Considering that the W2 distance and PIE cannot directly reflect the learning power as NCA does,
we select a vicinity graph in Cora which is hard for PDGNN to learn and visualize in Figure 5. As
shown in the figure, as the number of training samples increases, we find that PDGNN can gradually
capture the ground truth persistence points in the up y-axis and the up-right diagonal with much less
noise. The number of training samples may help the model learn the hard samples better.

We also observe that in Table 7, PDGNN reaches a comparable performance on NCA with much
fewer training samples. The observation shows that a little perturbation on the persistence image will
not influence its structural information very much.

Combining the observation in Section A.5.1 and Section A.5.2, we can safely conclude that our
model can be easily generalized to other frameworks. PDGNN does not need many training samples
to reach an acceptable performance, and it can be easily transferred to totally unseen graphs.

20

Figure 4: Influence of training samples.

(a) (b)

(c) (d)

Figure 5: Visualization on the influence of training samples. We select a vicinity graph in Cora with
Ollivier-Ricci curvature as the filter function, and plot the influence of training samples on the W2

distance (loss) of EPDs. (a), (b), and (c) denote the prediction of PDGNN with 5/10/20% training
samples, (d) denotes the prediction of PDGNN with the standard setting.

21

Table 8: Statistics and approximation error on the graph classification datasets
Dataset Graphs Avg Nodes Avg Edges W2 PIE

MUTAG 188 17.9 39.6 0.300 3.06e-4
ENZYMES 600 32.6 124.3 0.299 3.72e-3
PROTEINS 1113 39.1 145.6 0.194 8.30e-4
COLLAB 5000 74.5 4914.4 0.346 3.25e-2
IMDB-BINARY 1000 19.8 193.1 0.176 4.13e-4
REDDIT-BINARY 2000 429.6 995.5 0.383 1.92e-4
ZINC (subset) 12000 23.2 49.8 0.089 1.52e-5
OGBG-MolHIV 41127 25.5 27.5 0.104 4.96e-5

A.5.3 Experiments on graph classification datasets.

In the experiment part, we only consider predicting EPDs of the k-hop neighborhoods of the
original graphs. Even if these vicinity graphs can be large and dense, there can be structural
differences between these vicinity graphs and other real-world graphs. In this section, we do
further experiments on graph classification datasets, in which we approximate the EPDs of the
real-world graphs rather than the vicinity graphs. We exploit various datasets from the TU Dortmund
University [37], benchmarking-GNN [16], and OGB [25]. The detailed information of these datasets
and the approximation error are all available in Table 8.

Notice that we do not add Ollivier-Ricci curvature as the filter function here, because computing the
filter function on all the graphs will bring too much computational cost. Comparing the results from
Table 8 and the results on vicinity graphs, we observe that the performance on graph classification
datasets is slightly worse than the performance on vicinity graphs. This may be due to the fact that in
graph classification datasets, the training samples can be very small, e.g., there are only 188 graphs in
MUTAG, therefore the training is under-fit. On the contrary, the satisfying approximation quality on
OGBG-MolHIV and ZINC can be due to their large number of training samples.

To evaluate the results more clearly, we also visualize some selected examples in Figure 6. As shown
in the figure, in most situations, PDGNN can well estimate the EPDs on these graphs, and the W2

distance around 0.3 is generally an acceptable result.

A.5.4 Why not directly approximating PIs

We believe directly estimated PIs will lose important structural information that can be crucial for
downstream tasks. PI is only an approximation of the persistence diagram. The L2 distance between
PIs does not accurately reflect the true Wasserstein distance between diagrams. Therefore, using an
L2-distance-based loss to directly learn the PI may lead to the loss of important structural information
carried by a diagram. An example is provided in Figure 7. For a sample vicinity graph from Cora, we
compare the ground truth PI (computed from the ground truth diagram), the PI computed from the
diagram estimated by our method PDGNN, and the PI directly estimated by GIN. Both estimated PIs
have similar L2 distances from the ground truth PI. But we observe that the PI estimated by PDGNN
has a very similar spatial distribution to the ground truth PI. This structural property, however, is not
preserved by the directly estimated PI. Such loss of structural information of directly estimated PIs,
although not captured by the L2 error, partially explains their worse representation power. In Table 2
and Table 3 in the main paper, the directly estimated PIs (PEGN(GIN_PI) and TLC-GNN(GIN_PI))
perform worse in the downstream task.

This choice of estimating diagrams instead of PIs is a part of the overarching theme of our paper.
Note that the main contribution of our paper is to transfer a complicated and uncontrollable learning
process to a controllable process with algorithmic insight. This general principle also applies to our
learning algorithm. We decompose the diagram computation algorithm into sub-algorithms, which
can be approximated well by a GNN. This is the reason PDGNN approximates the diagrams much
better than other baselines in Table 1 in the main paper.

22

(a) (b)

(c) (d)

Figure 6: Visualization of graph classification samples. We select samples from IMDB-BINARY,
PROTEINS, ENZYMES, and REDDIT-BINARY, respectively, and report the W2 distance (loss).

(a) (b) (c)

Figure 7: Examples to explain why not directly approximating PIs.

Table 9: Experiments on large and sparse datasets.

Dataset Cora Citeseer PubMed
Node 2485 2120 19717
Edge 5069 3679 44324

Fast [60] 0.184 0.068 1.816
Gudhi [49] 0.045 0.023 1.696
PDGNN 0.006 0.005 0.007

23

Table 10: Experiments on the choice of filter functions.

Dataset Cora Citeseer PubMed
Filter clustering centrality clustering centrality clustering centrality

Evaluation on approximation error

W2 0.392 0.332 0.178 0.237 0.267 0.322
PIE 1.53e-3 4.14e-4 7.17e-4 4.65e-4 2.5e-3 3.75e-4

Evaluation on Time (s)

Fast [60] 2.10 2.21 1.16 1.31 38.07 39.05
Gudhi [49] 0.98 1.00 0.59 0.63 16.79 16.24
PDGNN 11.25 11.30 13.61 13.62 66.19 67.29

Table 11: Experiments on the threshold value.
Node 80 84 88 92 96 100 104 108 112 116 120
Edge 515 585 660 713 759 820 943 1012 1060 1152 1231
Fast [60] 6.8e-3 8.0e-3 8.9e-3 9.6e-3 1.0e-2 1.1e-2 1.3e-2 1.4e-2 1.4e-2 1.6e-2 1.7e-2
Gudhi [49] 2.5e-3 3.2e-3 3.6e-3 3.9e-3 4.0e-3 4.8e-3 5.5e-3 6.0e-3 6.4e-3 6.6e-3 6.8e-3
PDGNN 4.5e-3 4.5e-3 4.6e-3 4.6e-3 4.6e-3 4.6e-3 4.7e-3 4.7e-3 4.7e-3 4.7e-3 4.8e-3

A.5.5 Experiments on large and sparse datasets.

In the experiments in the main paper, the input is the k-hop vicinity graphs. On citation graphs, the
vicinity graph remains small. On these small graphs, the exact sequential algorithm like Gudhi has
less overhead, and thus is unsurprisingly faster.

Indeed, on large and sparse graphs, our method outperforms strong baselines like Gudhi significantly.
In Table 9, we compare the running time (in seconds) on popular citation networks including Cora,
Citeceer, and PubMed. For each graph, we run experiments on the largest connected subgraph. We
also report the number of nodes/edges of the selected subgraph.

A.5.6 Experiment on the choice of filter functions/other graph metrics.

In Table 10, we set degree centrality and clustering coefficient as the filter function, follow the
settings in Table 1 and report the approximation error on Cora, Citeseer, and PubMed. We also report
computation time following the setting in Table 4. The only difference is that below we report the
time to generate all vicinity graphs (rather than 1000 graphs as in Table 4).

We observe that (1) the filter function only has a minor influence on inference/computation speed,
for both the sequential algorithm and ours; (2) the filter function does influence the approximation
error. The reason is that different filter functions have different ranges; functions with larger ranges
tend to have larger approximation errors, especially on PIE. This is another evidence that the distance
function on PIs is not very robust for learning.

A.5.7 Experiments on the threshold value of average node/edge to decide which method is
the fastest to compute/estimate EPDs.

To find the threshold, we use the well-known Stochastic Block Model (SBM) [23] to generate
synthetic graphs. We set the number of nodes in these synthetic graphs from 200 to 300, with 10 as
the step. In these graphs, we randomly generate 5 different clusters, and set the probability of edges
intra-cluster to 0.4, and the probability of edges inter-cluster to 0.1. In this way, we can obtain 11
graphs with different nodes and edges. We set node degree as the filter function, and add experiments
on the largest connected components of these 11 graphs. The information of the selected connected
graphs and the running time (second) are listed in Table 11. As shown in the Table, the threshold is
around 100 nodes / 820 edges.

24

Table 12: Experiments on the threshold value.
Node 100 100 100 100 100 100 100 100 100 100 100
Edge 489 529 595 652 766 842 968 1011 1082 1231 1307
Fast [60] 7.0e-3 7.4e-3 8.3e-3 9.0e-3 1.1e-2 1.2e-2 1.3e-2 1.4e-2 1.4e-2 1.6e-2 1.7e-2
Gudhi [49] 2.8e-3 2.9e-3 3.0e-3 4.1e-3 4.2e-3 5.1e-3 5.5e-3 5.9e-3 6.2e-3 6.3e-3 6.7e-3
PDGNN 4.1e-3 4.1e-3 4.2e-3 4.2e-3 4.3e-3 4.4e-3 4.7e-3 4.7e-3 4.8e-3 4.8e-3 4.8e-3

We also evaluate the influence of density. We fix the node number of the SBM model to 250, and
set the probability of edges intra-cluster from 0.5 to 0.7, and the probability of edges inter-cluster
from 0.05 to 0.15. The steps for intra-cluster and inter-cluster are 0.02 and 0.01, respectively. In this
way, we can obtain 11 graphs with the same nodes and different edges. We set node degree as the
filter function, and add experiments on the largest connected components of these 11 graphs. The
information of the selected connected graphs and the running time (second) are also listed in Table 12.
As shown in the Table, the threshold is around 100 nodes / 766 edges.

A.5.8 Limitation of the paper.

First, in certain cases like Figure 6 (d), the model only captures a tendency of the EPD. This can
be because that the distribution of the EPD of the selected graph is seldom in the training samples.
Therefore, it is hard for the model to estimate these EPDs correctly.

Second, topological features are just one side of the data. In many cases, only using topological
features such as EPDs to represent the information of graphs is not enough. A better way is to
introduce other information such as the semantic information of graphs as complementary.

25

	1 Introduction
	2 Background: Extended Persistent Homology
	3 Algorithm Revision: Decomposing EPD into Edge-Wise Paring Predictions
	4 A Graph Neural Network for EPD Approximation
	4.1 EPD computation as a edge-wise prediction problem
	4.2 PDGNN

	5 Experiments
	5.1 Approximation Quality
	5.2 Downstream Tasks
	5.3 Algorithm Efficiency

	6 Conclusion
	A Supplementary material
	A.1 Related Works
	A.2 Complexity and Correctness of Algorithm 2
	A.2.1 Complexity
	A.2.2 Correctness

	A.3 Union-Find Algorithm
	A.4 Experimental details
	A.4.1 Datasets.
	A.4.2 Experimental Details
	A.4.3 About the assets we used

	A.5 Additional Experiments
	A.5.1 Experiments on transferability
	A.5.2 Evaluation on the influence of training samples
	A.5.3 Experiments on graph classification datasets.
	A.5.4 Why not directly approximating PIs
	A.5.5 Experiments on large and sparse datasets.
	A.5.6 Experiment on the choice of filter functions/other graph metrics.
	A.5.7 Experiments on the threshold value of average node/edge to decide which method is the fastest to compute/estimate EPDs.
	A.5.8 Limitation of the paper.

