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ABSTRACT

Masked Autoencoder (MAE) has recently been shown to
be effective in pre-training Vision Transformers (ViT) for
natural image analysis. By reconstructing full images from
partially masked inputs, a ViT encoder aggregates contex-
tual information to infer masked image regions. We believe
that this context aggregation ability is particularly essential
to the medical image domain where each anatomical struc-
ture is functionally and mechanically connected to other
structures and regions. Because there is no ImageNet-scale
medical image dataset for pre-training, we investigate a self
pre-training paradigm with MAE for medical image anal-
ysis tasks. Our method pre-trains a ViT on the training
set of the target data instead of another dataset. Thus, self
pre-training can benefit more scenarios where pre-training
data is hard to acquire. Our experimental results show that
MAE self pre-training markedly improves diverse medi-
cal image tasks including chest X-ray disease classifica-
tion, abdominal CT multi-organ segmentation, and MRI
brain tumor segmentation. Code is available at https:
//github.com/cvlab-stonybrook/SelfMedMAE

1. INTRODUCTION

Within a medical image, each anatomical structure func-
tionally and mechanically interacts with other structures and
regions present in the human body. Image analysis must
therefore accounts for these interdependencies and relation-
ships. For instance, classification of pathology on chest x-ray
might rely not only on textural changes within lung regions
but also on relative changes in cardiac and mediastinum [[1]].
For segmentation, features inherent to both the target object
and surrounding tissue enable delineation of specific struc-
tures. The presence of a brain tumor commonly results in
additional changes to the tumor’s surrounding microenviron-
ment including edema, structural shifts in brain tissue, and
increased vascularization [2]]. We hypothesize that enforcing
a strict requirement on contextual information learning can
improve deep learning—based medical image analysis.
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Fig. 1. Segmentation Pipeline with MAE Self Pre-training.
Left: A ViT encoder is first pre-trained with MAE. A random
subset of patches is input to the encoder and a transformer de-
coder reconstruct the full image. Right: The pre-trained ViT
weights are transferred to initialize the segmentation encoder.
Then the whole segmentation network, e.g., UNETR, is fine-
tuned to segment. A linear classifier can also be appended to
an MAE self pre-trained ViT for classification tasks.

Recent advancements in self-supervised learning (SSL)
show masked image modeling (MIM) [3| 4] is an effective
pre-training strategy for the Vision Transformer (ViT) [5].
The idea of MIM is masking and reconstructing, i.e., mask-
ing a set of image patches at the input and reconstructing
masked patches at the output. In this way, MIM encourages
the network to infer the masked target by aggregating infor-
mation from the context. We believe the ability to aggregate
contextual information is essential for medical image analy-
sis. Among different MIM frameworks, Masked Autoencoder
(MAE) [4] is both simple and effective. MAE has an asym-
metric encoder-decoder architecture, with a ViT encoder that
is input with only visible tokens, and a lightweight decoder
that reconstructs the masked patches from the encoder patch-
wise output and trainable mask tokens. MAE is trained with
a mean square error loss by regressing the input pixel values.

In this paper, we propose a MAE-based self pre-training
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paradigm for medical image analysis tasks. We apply MAE
pre-training on the same dataset (train-set) as the downstream
task. We term this self pre-training. Self pre-training can ben-
efit more scenarios where suitable pre-training data is hard to
acquire. It also avoids the domain discrepancy between pre-
training and fine-tuning by unifying the training data of two
stages. We experiment on three medical image tasks includ-
ing lung disease classification on chest X-ray14 (CXR14 [6]),
CT multi-organ segmentation on BTCV [[7] and MRI brain
tumor segmentation (BraTS) from the Medical Segmentation
Decathlon [8]]. After MAE pre-training, ViT is added with a
task-specific head and fine-tuned for downstream tasks. For
classification, the head is a linear classifier. For segmenta-
tion, we follow the decoder design of UNETR [9]]. Note that
UNETR is only a segmentation framework which does not
include any self-supervised pre-training algorithm.

Our experimental results indicate that MAE self pre-
training can significantly improve medical image segmen-
tation and classification performance compared to random
initialization. MAE self pre-training also surpasses the Ima-
geNet pre-training paradigm on all the datasets.

2. METHODOLOGY

2.1. Preliminary: Vision Transformer

We use ViT as the backbone for both pre-training and down-
stream tasks. A ViT is composed of a patch embedding layer,
position embedding, and Transformer blocks.

Patch Embedding: The patch embedding in ViT layer
needs to transform data into sequences. 3D volumes x €
RAXWXDXC are first reshaped into a sequence of flattened
3D patches x, € RV* (" *-C), where C is the input channel,
(H, W, D) is the resolution, (P, P, P) is the patch resolution,
and N = HW D/ P? is the number of patches, i.e., the length
of the input sequence fed into the Transformer. A trainable
linear projection is applied to map them to patch embeddings.
Position Embedding: To retain positional information, patch
embeddings are added with position embeddings. The stan-
dard ViT adopts 1D learnable position embeddings. However,
we experimentally find that the learnable 1D position embed-
dings can hurt the reconstruction of MAE. Therefore, we use
sine-cosine [4, position embedding in the pre-training
stage. For the downstream tasks, we initialize the learnable
position embedding with sine-cosine embedding values.
Transformer Block: This consists of alternating layers of
multiheaded self-attention (MSA) [11] and MLP blocks.

2.2. Self Pre-training with Masked Autoencoders

In this section, we illustrate the components in MAE, i.e., the
encoder, the decoder and the loss function.

Encoder in MAE. As shown in Fig. EkLeft), the ViT encoder
reconstructs the full input from only partial patches. The in-
put is first divided into non-overlapping patches. Patches are

Fig. 2. MAE reconstruction. First row: Original image.
Second row: Masked image where masked regions are col-
ored with gray/black. Third row: Reconstructed images from
unmasked patches. Every two columns show the results of
one dataset, i.e., CXR, BTCV and BraTS from left to right.

then randomly assigned into visible and masked groups. The
MAE encoder only operates on visible patches to learn a rep-
resentation. To restore the positional information, patches are
also added with corresponding position embeddings before
being forwarded into ViT. Since the encoder output is used
to reconstruct the masked input, the encoder is encouraged to
extract a global representation from partial observations.
Decoder in MAE. The MAE decoder is input with the full
set of tokens including patch-wise representations from the
encoder and learnable mask tokens put in the positions of
masked patches. By adding positional embeddings to all in-
put tokens, the decoder can restore the patch in each specific
masked position. Note that the decoder is only an auxiliary
module for pre-training and is not used in downstream tasks.
Loss function in MAE. MAE is trained with a reconstruc-
tion loss, i.e., mean squared error. Instead of reconstructing
the complete image/volume, i.e., both visible and masked
patches, MAE only predicts the pixel/voxel values of the
masked patches, which is proven to achieve better results [4].
In practice, normalized pixel/voxel values within each patch
are better reconstruction targets than raw values.

2.3. Architectures for Downstream Tasks

After MAE self pre-training, we append task-specific heads
to perform downstream tasks such as classification and seg-
mentation. For classification, we append a linear classifier
after the class token output from ViT. Since chest X-ray can
carry more than one label, we finetune the whole network
with a binary cross entropy loss. For segmentation, we build
UNETR [9] upon the MAE pre-trained ViT encoder and
a randomly-initialized convolutional decoder. UNETR has
been recently proposed for 3D image segmentation tasks. Its
architecture shares the same idea of U-Net [[12], i.e. features
from multiple resolutions of the encoder are skip-connected
with the decoder. The input to the UNETR decoder is a
sequence of representations from the encoder. Each represen-



Table 1. Abdomen Multi-organ Segmentation on BTCV. MAE self pre-training improves upon the UNETR baseline by a
large margin from 78.8% to 83.5% on DSC. It also shows superior performance to ImageNet supervised pre-training.

Framework Avg DSC1/HD95| Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach
U-Net(R50) [12] 74.68/36.87 84.18 62.84 79.19 71.29 9335 4823 84.41 73.92
AttnUNet(R50) [13] 75.57/136.97 55.92 63.91 79.20 72.71 93.56  49.37 87.19 74.95
TransUNet [14] 77.48/31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
DSTUNet [15] 82.44/17.83 88.16 67.40 87.46 81.90 94.17 66.16 92.13 82.10
nnFormer [16] 86.57/10.63 92.04 70.17 86.57 86.25 96.84  83.35 90.51 86.83
nnUNet [17] 86.99/10.78 93.01 71.77 85.57 88.18 97.23 83.01 91.86 85.26
UNETR 78.83/25.59 85.46 70.88 83.03 82.02 95.83 50.99 88.26 72.74
UNETR-+ImageNet 79.67/24.28 86.07 74.29 82.44 81.65 95.84  58.08 87.74 69.98
UNETR+MAE 83.52/10.24 88.92 75.25 86.37 84.00 95.95 65.02 90.56 80.89

Table 2. Lung Disease Classification on CXR14. We com-
pare MAE self pre-training with training from scratch, train-
ing with longer epochs, and training with transferred Ima-
geNet weights. MAE self pre-training outperforms them all.

. Pre-trainin,
Architectures Mothod %)ataset Epochs mAUC?T
CXR14-R50 [6] supervised ImageNet-1K 74.5%
ChestNet [18] supervised ImageNet-1K 78.1%
CheXNet [19][20] supervised ImageNet-1K 78.9%
ResNet18 [21] MoCo [22] Self 78.6%
ResNet50 MoCo-v2 [23] Self 79.4%
Enc [20] LSAE self - 79.0%
ViT-B/16 None None 100 74.4%
ViT-B/16 None None 400 74.9%
ViT-B/16 supervised ImageNet-1K 100 80.7%
ViT-B/16 MAE Self 100 81.5%

tation is reshaped to restore the spatial dimension. They are
further upsampled and concatenated with shallower features
repeatedly for higher segmentation resolution.

3. EXPERIMENTS AND RESULTS

3.1. Datasets and Implementation Details

Lung Disease Classification on ChestX-rayl4. ChestX-
ray14 [6] is a large-scale CXR database consisting of 112,120
frontal-view CXRs from 32,717 patients. We conduct the
classification task based on the official split which consists
of trainval (~ 80%) and testing (~ 20%) sets. We adopt the
multi-class AUC as the performance metric.

Abdomen Multi-organ Segmentation on BTCV. BTCV [7]]
(Multi Atlas Labeling Beyond The Cranial Vault) consists of
30 subjects with abdominal CT scans where 13 organs were
annotated by radiologists. Each CT volume has 85 ~ 198
slices of 512 x 512 pixels, with a voxel spatial resolution
of (0.54 x 0.98 x [2.5 ~ 5.0] mm?). We follow [[14} 24]
to split the 30 cases into 18 (training) and 12 (validation).
We report the average Dice similarity coefficient (DSC) and
95% Hausdorff Distance (HD) on 8 abdominal organs (aorta,
gallbladder, spleen, left kidney, right kidney, liver, pancreas,
and stomach) to align with [14] for ease of comparison.
Brain Tumor Segmentation on MSD. This is one of the
10 tasks in Medical Segmentation Decathlon (MSD) Chal-
lenge [I8]. The entire set has 484 multi-modal (FLAIR, T1w,

T1-Gd and T2w) MRI brain scans. The ground-truths of seg-
mentation includes peritumoral edema, GD-enhancing tumor
and the necrotic/non-enhancing tumor core. The perfor-
mance is measured on three recombined regions, i.e., tumor
core, whole tumor and enhancing tumor. We randomly split
the dataset into training (80%) and validation (20%) sets.
Reported metrics include average DSC and 95% HD.

Our experiments are implemented on PyTorch [25] and

MONAI [26]]. We use ViT-B/16 as the backbone and AdamW
as the optimizer in all the experiments. The patch size is
16 x 16 for 2D images and 16 x 16 x 16 for 3D volumes.
Data Preprocessing and Augmentation. For ChestX-ray14,
we perform histogram equalization on all the X-ray images.
During training, we randomly flip and crop a 224 x 224 re-
gion out of the original 256 x 256 image. For BTCV, we
clip the raw values between -175 and 250, and re-scale the
range within [0,1]. During pre-training and fine-tuning, we
randomly flip and crop a 96 x 96 x 96 volume as the input. For
BraTS, we perform an instance-wise normalization over the
non-zero region per channel. In pre-training and fine-tuning,
we randomly flip and crop a 128 x 128 x 128 volume.
MAE Self Pre-training. The initial learning rate (Ir) is 1.5e-4
and weight decay is 0.05 for all tasks. Ir decays to zero fol-
lowing a cosine schedule with warm-ups. MAE pre-training
runs for 800 epochs on ChestX-ray14, 10,000 on BTCV, and
500 on BraTS$ with training batch sizes as 256, 6 and 6.
Task Fine-tuning. We adopt layer-wise learning rate decay
(layer decay ratio: 0.75) to stablize the ViT training and a
random DropPath with a 10% probability. The learning rates
vary between tasks. The learning rate is le-3 for CXR14, 8e-
4 for BTCV, and 4e-4 for BraTS. The training batch size on
CXR14, BTCV and BraTS is 256, 6, and 6. Learning rate
during fine-tuning also follows a cosine decay schedule.

3.2. Results

MAE Reconstruction. We show the reconstruction results
of MAE with a mask ratio of 75% in Fig[2] The three rows
show the original images, the masked images, and the recon-
structed images, respectively. The results demonstrate that
MAE is able to restore the lost information from the random
context. As the reconstruction loss is only applied to the
masked patches, the restored visible patches look blurrier. It



Table 3. MSD Brain Tumor Segmentation & Ablation Study on Mask Ratios and Pre-training Epochs.

Pre-train Pre-train

Mask ratio Epochs Avg DSCT  WT ET TC Mask ratio Epochs Avg DSCT
Method Average WT ET TC 87.5% 500 77.14 9022 61.06 80.15 87.5% 10k 82.21
DSCT HD95] DSCt HD95| DSCt HD95| DSCt HD95| 75% 500 78.14 90.60 6248 81.35 75% 10k 82.76
UNETR 77.40 778 90.25 6.79 61.45 833 80.51 7.57 75% 1000 78.29 90.25 63.06 81.55 75% 40k 81.09

UNETR+ImageNet ~ 77.78 7.38 90.34 7.19 62.23 7.86 80.78 7.00 75% 2000 78.43 90.33 6345 81.52

UNETR+MAE 78.91 722 90.84 7.04 63.88 7.15 82.00 7.13 50% 500 78.42 90.59 63.05 81.63 50% 10k 83.2
25% 500 78.71 90.76  63.48 81.88 25% 10k 83.18
12.5% 500 78.91 90.84 63.88 82.00 12.5% 10k 83.52
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Fig. 3. Qualitative Results of Segmentation. Results on
BTCYV are shown in the first two rows. In the first row, note
the absence of the false positive segmentation (orange arrow)
after MAE pre-training. In the second row, the stomach seg-
mentation (red asterisk) is incomplete when created by the
UNETR approach compared to an MAE pre-trained UNETR.
Results on MSD BraTS are shown in the last two rows. In
the third row, only subtle improvements are noticeable in the
segmentation such as peripheral yellow necrotic core segmen-
tations (white arrows) being captured after MAE pre-training.
In the fourth rows, necrotic core segments are nearly absent
without MAE pre-training.

is worth noting that the ultimate goal of MAE is to benefit
downstream tasks rather than generating high-quality recon-
structions. We hypothesize that the contextual information
for reconstructions of masked image patches is of particular
importance in medical imaging tasks where any given ROI
is intrinsically dependent and connected to its physiological
environment and surroundings.

Lung Disease Classification. The results are listed in Ta-
ble 2| First, with no pre-training, ViT hardly achieves a
competitive result even with longer training epochs. This is
expected considering its large model size and lack of induc-
tive bias. Second, MAE self pre-training outperforms the
ImageNet pre-trained ViT by 0.8%. This shows the promis-
ing potential of the new MAE self pre-training paradigm for

medical images. Finally, we compare with the CNN-based
SOTA using both ImageNet pre-training and self-supervised
pre-training by MoCo [22] and LSAE [27]. ViT with
MAE self pre-training outperforms them all.

Abdomen Multi-organ Segmentation. The results of multi-
organ segmentation are shown in Table [T MAE self pre-
training improves upon the UNETR baseline by a large
margin, from 78.8% to 83.5% on average DSC. It is also
superior to the ImageNet pre-training paradigm. As MAE
is previously only applied on large-scale datasets like Ima-
geNet (N=1000,000), it is interesting to observe its notable
performance on a small-scale dataset (N=30); this further
demonstrates the promising potential of applying MAE self
pre-training to medical images in limited data scenarios. Note
that the goal of our work is to demonstrate the effectiveness
of self MAE pre-training instead of pursuing the state-of-the-
art. With more advanced backbone architectures and data
pre-processing procedures, [[13] achieve better perfor-
mance than self MAE pre-trained UNETR.

Brain Tumor Segmentation. Results are listed in Table 3]
UNETR achieves an average DSC of 77.4% and a HD95
of 7.78mm. With the help of MAE (12.5% mask ratio) self
pre-training, the performance of UNETR is improved further
achieving a 78.91% DSC and a HD95 of 7.22mm.

Ablation Study. We conduct experiments with different
MAE pre-training epochs and mask ratios (Table [3). First,
the performance of MAE on BraTS generally benefits from
longer training. However, prolonged pre-training can lead to
inferior performance after a large number of epochs due to
over-fitting. Second, unlike the high mask ratio [4] adopted
in natural images, the two segmentation tasks show different
preference to the mask ratios. The best segmentation results
are achieved with a mask ratio of 12.5%.

4. CONCLUSION

We have demonstrated that MAE pre-training improves
SOTA classification and segmentation performance on a di-
verse set of medical image analysis tasks. Importantly for
medical imaging tasks, MAE self pre-training outperforms
existing methods on small datasets, including ImageNet-
transfer learning. Furthermore, we demonstrate the effec-
tiveness of MAE on 3D medical images including both CTs
and MRIs. In future work, we will test the efficacy of MAE
pretraining in prognosis and outcome prediction tasks [28].
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