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Pathology data Is employed in care guidelines and
clinical settings for virtually all cancer disease sites.

Treatment decisions frequently hinge on subjective
assessments -- poor inter-observer reproducibility.

Widespread clinical adoption of Digital Pathology
platforms in coming years

Combination of Digital Pathology platforms and
maturing of machine learning and artificial intelligence
methodology will make possible adoption of image
data driven decision support systems.

Development and adoption of such systems will have
tremendous impact on improving quality and
consistency of clinical decision making.



Tools to Analyze Morphology and Spatially Mapped

" Molecular Data - U24 CA180924

e Specific Aim 1 Analysis pipelines for multi- scale,
integrative image analysis.

» Specific Aim 2: Database infrastructure to manage
and query Pathomics features.

e Specific Aim 3: HPC software that targets clusters,
cloud computing, and leadership scale systems.

» Specific Aim 4: Develop visualization middleware
to relate Pathomics feature and image data and to
integrate Pathomics image and “omic” data.
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SEER Virtual Tissue Repository

Vision — Enable population/epidemiological cancer
research that leverages rich cancer phenotype
information available from Pathology tissue studies

NCIP/Leidos 14X138 and HHSN261200800001E - NCI

* Lynne Penberthy MD, MPH NCI SEER

e Ed Helton PhD NCI CBIIT Clinical Imaging Program

e Ulrike Wagner CBIIT Clinical Imaging Program

e Radim Moravec NCI PhD, NCI SEER

e Ashish Sharma PhD Biomedical Informatics Emory

e Joel Saltz MD, PhD Biomedical Informatics Stony Brook
e Tahsin Kurc PhD Biomedical Informatics Stony Brook

e Georgia Tourassi, Oak Ridge National Laboratory
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' SEER Virtual Tissue Repository

e SEER registries are a potential source of
information about unusual outcomes and rare
cancers

e Leverage Pathology labs which store FFPE tumors,
slides and digital images

e Link to SEER data — track long term outcomes
 SEER: 500K Cancer patients per year

e Accrue linked clinical data, Pathology slides from
SEER sites
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- SEER VIRTUAL TISSUE REPOSITORY

e Create linked collection of de-identified clinical data
and whole slide images

e Extract features from a sample set of images
(pancreas and breast cancer).

* Enable search, analysis, epidemiological
characterization

e Pilot focus on extreme outcome Breast Cancer,
Pancreatic Cancer cases

e Display images and analyzed features
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Robust Nuclear Segmentation

* Robust ensemble algorithm to segment nuclei across tissue types
e Optimized algorithm tuning methods
* Parameter exploration to optimize quality

e Systematic Quality Control pipeline encompassing tissue image
quality, human generated ground truth, convolutional neura
network critique

e Yi Gao, Allen Tannenbaum, Dimitris Samaras, Le Hou, Tahsin Kurc
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Whole Slide Images (WSI)

Compute Cluster

Segmentation
Parameters
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Feéature Viz Suite

e Explore Relationship Between Imaging Features,
Outcome, “omics”

e Explore relationships between features and explore
how features relate to images
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Feature Explorer - Integrated Pathomics Features, Outcomes

and “omics” — TCGA NSCLC Adeno Carcinoma Patients
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" Feature Explorer - Integrated Pathomics Features, Outcomes

and “omics” — TCGA NSCLC Adeno Carcinoma Patients
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Pathomics

Relationship Between Image and Features

Step Z2° Helect TWo Teatures of Interest; X

Step 1: Choose a case from the TCGA atlas (case #20) axis (area), Y axis (perimeter)

FeatureScape: u24 case preview prototype &3

Preview of using featurescape to explore different patient case ids. 150
For an interactive visualization of Pathology results (including links to the cBio reccord) see TCGAscope.

preview Case IDs \
20 O ST Ol 00 D ichio) random seed:0.816. feature sample size: 1000 featurescape of sampled features

Perimeter

Step 5: Evaluate the features selected in the context of

the spedfic nucleus and where this nucleus is located Step 4: Pick a specific nucleus of interest.

within the whole slide image Each dot represents a single nucleus

Step 3: Zoom in on region of interest

Selected nucleus
geolocated within
whole slide image

Periineter

Perimeter

Area
Detects area
elongated
nucleus The tool provides visual context for feature evaluation. This technique maps both intuitive features (i.e.

size, shape, color) and non-intuitive features (i.e. wavelets, texture) to the ground truth of source
images through an interactive web-based user interface.
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' Select Feature Pair — dots correspond to nuclei

FeatureScape @ # Preliminary demo of integrative use of multiple FeatureScape tools

1000 entries sampled from https://tahsin17a.informatics.stonybrook. edu:4500/7limit=1000&find={%22randval % 22:
{%22%gte%22:0.149), % 22provenance.analysis_execution_id%22:%22lung-features-v4 %22, % 22image.caseid %22:%22TCGA-38-4628-01Z-00-DX1%22}

+ Load Data

Cross-tabulated feature correlations
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Subregion selected — form of gating analogous to flow

cytometry

FeatureScape d € Preliminary demo of integrative use of multiple FeatureScape tools

1000 entries sampled from https://tahsin173.informatics.stonybrook.edu:4500/7limit=1000&find={%22randval %22:
{%22%gte%22:0.149},%22provenance.analysis_execution_id%22:%22lung-features-v4%22, % 22image.caseid %22: %22 TCGA-38-4628-012-00-DX1%22}

+ Load Data

-
Cross-tabulated feature correlations Q = .
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Resample from selected region (under development)
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Sample Nuclei from Gated Region
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~ Gated Nuclei in Context

SubjectiD :-TCGA-38-4628-01Z-00-DX1
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- Docker and Virtual Machine Distributions
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QulP: Quantitative Imaging for Pathology
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’athology — Generate High Quallty' 011
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ITCR - Tools to Analyze Morphology and Spatially Mapped Molecular Data 0o »

3D Slicer Pathology

Whole Sl'de Images{WSI} Tune algorithm parameters to generate good Segmented Results

segmentation results for selected patches
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* Apply Segmentation Algorithm

ITCR - Tools to Analyze Morphology and Spatially Mapped Molecular Data
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+ Adjust algorithm parameters, manual fine tuning

|\

ITCR --Tools to Analyze Morphology and Spatially Mapped Molecular Data
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Classification

e Automated or semi-automated identification of
tissue or cell type

e Variety of machine learning and deep learning
methods

* Quantification of lymphocyte infiltration
e Collaboration with TCGA Pan Can Atlas Immune Group

e Classification of Neuroblastoma
e Classification of Gliomas
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e TCGA Pan Can Immune: ¢ Deep Learning Graduate

e \Vesteinn Thorsson Students
e lya Shmulevich * LeHou
* Vu Nyugen
* TIL Project Leads e Pathology Fellows/ Faculty
® JOEI SaItZ e Anne Zhao
e Dimitris Samaras e John Van Arnam
e Tahsin Kurc e Rebecca Batiste
e Alex Lazar e Biostatistics

e caMicroscope Lead * Arvind Rao

e Ashish Sharma * Active Learning
Collaborator

* Lee Cooper
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TCGA PanCan TILS Collaborative Effort

e Deep learning algorithm trained on
20K+ patches

e Pathologist correction is essential to
reduce false positives as there are
many patches.

e GUI developed to accomplish this — e T s
rolled out to TCGA Pathologists

* TCGA TIL rich tumors including —
NSCLC adenocarcinoma, breast,
pancreatic, colorectal, skin and
uveal melanoma

 Working group of TCGA Pathologists
- leverage tool to generate TCGA TIL
data and TIL maps (Alex Lazar)

 CNN Algorithm presented at USCAP B v . L |
2017 - ZhaO et al ¢ Pred  Label
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Training a CNN

Predicted label Pathologist’s label

CNN —{ Non Lymphocyte <,?T_> Lymphocyte

Minimize the
difference
between
predicted label
and the true
label.
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Presenter
Presentation Notes
Given a dataset of images with corresponding labels. The CNN is trained to output predicted labels that match the true labels of its inputs. However this requires a lot of labeled data.


Patch Based Performance Evaluation of CNN

Classification = TCGA Non Small Cell Lung Cancer

Receiver Operating Characteristic (ROC) curve
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- Lymphocyte Classification Heat Map

Trained with 22.2K image patches
Pathologist corrects and edits
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Image based TIL prediction

e |nitial unsupervised training step (autoencoder) -
initialize CNN

* Train CNN on initial supervised dataset

* Apply CNN to obtain predicted lymphcyte heatmaps
e Pathologists edit heatmaps using caMicroscope

e Extract new training data from edited heatmaps

e Sampling algorithm to adjust thresholds

e USCAP 2017 Zhao et al, submitted publication to
International Conference on Computer Vision
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caMicroscope with TIL heatmap

Q& o | 17 caMicroscope SubjectiD :TCGA-44-3398-012-00-DXT
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IL Distribution Maps

Prediction edited by Prediction without Prediction edited by
Pathologist 1 editing Pathologist 2

Tissue Specimen
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TCGA Pan Can Immune

 Roughly 3.5K TIL maps generated to date with
pipeline on track to complete roughly 10K by mid-
April

e Comparison with TIL molecular epigenetic and RNA
seq data

e Initial draft manuscript completed March 24t
e Deeper dive into TCGA “omics” analytics
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Dissemination

e Containers

e Containerized segmentation algorithm/FeatureDB Employed
to support TIES, MICCAI, and competitions supported through
Kalpathy-Kramer ITCR

e Full containerized implementation of
caMicroscope/FeatureDB/Segmentation algorithm/Feature
Scape - Feb 1 2017

e Cloud Pilots

e TCIA

e HPC via NSF and DOE

e TCGA — PanCanAtlas — Lymphocyte characterization
* Integrated Features/NLP joint with TIES

q\\\\‘ Stony Brook Medicine



ITCR Team

Stony Brook University
Joel Saltz

Tahsin Kurc

Yi Gao

Allen Tannenbaum
Erich Bremer
Jonas Almeida
Alina Jasniewski
Fusheng Wang
Tammy DiPrima
Andrew White

Le Hou

Furgan Baig

Mary Saltz

Emory University
Ashish Sharma
Adam Marcus

Oak Ridge National Laboratory
Scott Klasky

Dave Pugmire

Jeremy Logan

Yale University
Michael Krauthammer

Harvard University
Rick Cummings

‘\\\\‘ Stony Brook Medicine



~Funding — Thanks!

* This work was supported in part by U24CA180924-
01, NCIP/Leidos 14X138 and HHSN261200800001E
from the NCI; RO1LM011119-01 and RO1LM009239
from the NLM

e This research used resources provided by the
National Science Foundation XSEDE Science
Gateways program under grant TG-ASC130023 and
the Keeneland Computing Facility at the Georgia
Institute of Technology, which is supported by the
NSF under Contract OCI-0910735.
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Thanks!
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